专题文章
时长:00:00更新时间:2024-12-16 17:31:20
二次函数的图像是一条抛物线,其开口方向由系数 \;(a\;) 的正负决定。在本例中,\;(a=2>;0\;),表明抛物线开口向上。顶点 \;((-3.-1/2)\;) 是这条抛物线的最低点,意味着当 \;(x=-3\;) 时,函数取得最小值 \;(-1/2\;)。若考虑函数的增减性,当 \;(x>;-3\;) 时,随着 \;(x\;) 的增加,函数值逐渐增大;当 \;(x<;-3\;) 时,随着 \;(x\;) 的减小,函数值也逐渐增大。因此,函数在 \;(x=-3\;) 处取得极小值 \;(-1/2\;)。
查看详情