专题文章
时长:00:00更新时间:2024-10-24 02:27:30
设双曲线方程为x^2/a^2-y^2/b^2=1x0dx0a弦上两点分别为(x1,y1),(x2,y2),弦中点为(x0,y0),弦所在直线的斜率为kx0dx0a则k=(y1-y2)/(x1-x2),x0=(x1+x2)/2,y0=(y1+y2)/2x0dx0a将(x1,y1),(x2,y2),代入双曲线方程x0dx0ax1^2/a^2-y1^2/b^2=1(1)x0dx0ax2^2/a^2-y2^2/b^2=1(2)x0dx0a(1)-(2)得x0dx0a(x1^2-x2^2)/a^2=(y1^2-y2^2)/b^2x0dx0a[(x1-x2)(x1+x2)]/a^2=[(y1-y2)(y1+y2)]/b^2x0dx0a得到k=(b^2/a^2)*(x0/y0)本回答被网友采纳
查看详情