视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501
当前位置: 首页 - 家居风水 - 正文

应该怎样求解一元二次方程

来源:懂视网 责编:小OO 时间:2020-04-13 20:34:14
导读应该怎样求解一元二次方程,一、工具:Matlab2012b二、操作步骤:A.解一元方程【1】先举一例,解方程"x^2+100*x+99=0"在matlab”CommandWindow"中输入如下命令:x=solve(x^2+100*x+99=0,x)见下图【2】回车后,matlab就求出了这个一元二次方程的解。见下图【3】再怎样求解一元二次方程,一起来看看吧公式法先判断△=b?-4a

一、工具:Matlab2012b 二、操作步骤: A.解一元方程 【1】先举一例,解方程"x^2+100*x+99=0"在matlab ”Command Window"中输入如下命令:x=solve('x^2+100*x+99=0','x')见下图 【2】回车后,matlab就求出了这个一元二次方程的解。见下图 【3】再

怎样求解一元二次方程,一起来看看吧

公式法

先判断△=b?-4ac,

1、本题要先判断a,如果a=0,则不是一元二次方程。 2、首先要判断d是否小于0,则只能有虚数解,d小于0时,就不能去开平方,否则会出错。 3、按照以上思路重新修改你的程序。

若△<0原方程无实根;

您好!很高兴为您解答。 原代码中的scanf和printf中的%要放在d和lf的前面才对,改正后运算无误~ #include #include void main () { double x1;//x1,x2分别为方程的2个解 double x2; double melt; int a; int b;//初始化ABC的三个变量 int c; pri

若△=0,原方程有两个相同的解为:X=-b/(2a)

用配方法解一元二次方程的一般步骤: 1、把原方程化为的形式; 2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; 3、方程两边同时加上一次项系数一半的平方; 4、再把方程左边配成一个完全平方式,右边化为一个常

若△>0,原方程的解为:X=((-b)±√(△))/(2a)

在做这些东西可真不容易呀 A: B: C: R1 R2 function showResult(){ var pattern=/[0-9]+/; var a=document.getElementById("texta").value; var b=document.getElementById("textb").value; var c=document.getElementById("textc").value; v

配方法

先把常数c移到方程右边得:aX?+bX=-c

#include #include int main(void) { double a,b,c,x1,x2,d; scanf("%lf%lf%lf",&a,&b,&c); d = b * b - 4 * a * c; if(d > 0) { x1 = (-1 * b + sqrt(d)) / (2 * a); x2 = (-1 * b - sqrt(d)) / (2 * a); printf("x1 = %g,x2 = %gn",x1,x2); }

将二次项系数化为1得:X?+(b/a)X=- c/a

步骤: 打开visual C++ 6.0-文件-新建-文件-C++ Source File 2. 定义变量: #include #include void main() { double a,b,c; /*定义系数变量*/ double x1,x2,p; /*定义根变量和表达式的变量值*/ 3.输入系数: printf("请输入a,b,c:"); /*提示用

方程两边分别加上(b/a)的一半的平方得:X?+(b/a)X +(b/(2a))?=- c/a +(b/(2a))?

一元二次方程的两个根可以通过因式分解法和十字相乘法解出。 1、因式分解法:又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级

方程化为:(b+(2a))?=- c/a +(b/(2a))?

对于如下的一元二次方程: ax*x+bx+c=0设计C语言程序,输入一元二次方程的三个系数a、b、c,求解出该方程的两个根,并且允许用户在程序中多次输入不同的系数,以求解不同的一元二次方程的解。编程思路分析:对于该方程,令delta=b^2-4*a*c,从数

①、若-c/a +(b/(2a))?<0,原方程无实根;

解一元二次方程的格式写法如下。 先写成 ax²+bx+c=0的形式,计算△=b²-4ac,判断△是否大于0,如果小于0无解,然后就可以直接写求根公式。 一元二次方程:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一

②、若-c/a +(b/(2a))? =0,原方程有两个相同的解为X=-b/(2a);

一元二次方程解法: 直接开平方法:形如x²=p 或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。 配方法:将一元二次方程配成(x+m)²=n的形式,再利用直接开平方法求解的方法。 因式分解法: 因式分解法即利用因

③、若-c/a +(b/(2a))?>0,原方程的解为X=(-b)±√((b?-4ac))/(2a)。如:解方程:x^2-4x+3=0  把常数项移项得:x^2-4x=-3  等式两边同时加1(构成完全平方式)得:x^2-4x+4=1  因式分解得:(x-2)^2=1 解:x1=3,x2=1

有三种方法: 一、配方法 二、因式分解法 三、公式法 举例如下: x²-4x+3=0 方法一: (x-2)²-4+3=0 (x-2)²-1=0 (x-2)²=1 x-2=±1 x1=3 x2=1 方法二: (x-1)(x-3)=0 x1=1 x2=3 方法三: x=[4±√(-4)²-4×3]/2 x=(4±2)&

因式分解法

将一元二次方程aX?+bX+c=0化为如(mX-n)(dX-e)=0的形式可以直接求得解为X=n/m,或X=e/d。如:解方程:x^2+2x+1=0  利用完全平方公式因式分解得:(x+1﹚^2=0  解得:x1=x2=-1

首先当a不等于0时方程:ax^2+bx+c=0才是一元二次方程。 1、公式法:Δ=b²-4ac,Δ<0时方程无解,Δ≥0时。 x=【-b±根号下(b²-4ac)】÷2a(Δ=0时x只有一个) 2、配方法:可将方程化为[x-(-b/2a)]²=(b²-4ac)/4a² 可解

代数法

ax^2+bx+c=0  同时除以a,可变为x^2+bx/a+c/a=0  设:x=y-b/2  方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错,应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0  再变成:y^2+(b^22*3)/4+c=0 X/y^2-b^2/4+c=0 y=±√[(b^2*3)/4+c] X/y=±√[(b^2)/4+c]

一元二次方程的解法 一、知识要点: 一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基 础,应引起同学们的重视。 一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最

直接开平方法

韦达定理说明一元二次方程2根之间的关系. 一元二次方程ax²+bx+c=0中,(a≠0)两根X1,X2有如下关系:x1+x2=-b/a , x1*x2=c/a 一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1*X2=c/a 用韦达定理判断方程的根

形如(X-m)?=n (n≥0)一元二次方程可以直接开平方法求得解为X=m±√n

解一元二次方程的方法定义只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程(quadraticequationofonevariable)。一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是

扩展阅读,以下内容您可能还感兴趣。

解一元二次方程的格式怎么写?

解一元二次方程的格式写法如下。

先写成 ax²+bx+c=0的形式,计算△=b²-4ac,判断△是否大于0,如果小于0无解,然后就可以直接写求根公式。

一元二次方程:只含有e799bee5baa6e997aee7ad94e58685e5aeb931333366306436一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。标准形式为:ax²+bx+c=0(a≠0)。

一元二次方程必须同时满足三个条件:

①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

②只含有一个未知数;

③未知数项的最高次数是2。

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程  。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

扩展资料:

利用一元二次方程根的判别式(  )可以判断方程的根的情况。

一元二次方程  

的根与根的判别式 有如下关系: 

①当  时,方程有两个不相等的实数根;

②当  时,方程有两个相等的实数根;

③当  时,方程无实数根,但有2个共轭复根。

上述结论反过来也成立。

将一元二次方程配成  的形式,再利用直接开平方法求解的方法 。

(1)用配方法解一元二次方程的步骤:

①把原方程化为一般形式;

②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;

③方程两边同时加上一次项系数一半的平方;

④把左边配成一个完全平方式,右边化为一个常数;

⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

(2)配方法的理论依据是完全平方公式 

(3)配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。

参考资料:百度百科---一元二次方程

怎样求解一元二次方程

一元抄二次方程解法:

直接开平方法:形如x²=p 或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。

配方法:将一元二次方程配成(x+m)²=n的形百式,再利用直接开平方法求解的方法。

因式分解度法:

因式分解法即利用因式分解求出方程问的解的方法。

因式分解法解一元二次方答程的一般步骤:

①移项,使方程的右边化为零;

②将方程的左边转化为两个一元一次方程的乘积;

③令每个因式分别为零

④括号中x,它们的解就都是原方程的解。

......

一元二次方程怎么解

有三种方法:

一、配度方法

二、因式分解法

三、公式法内

举例如下:容

x²-4x+3=0

方法一:

(x-2)²-4+3=0

(x-2)²-1=0

(x-2)²=1

x-2=±1

x1=3

x2=1

方法二:

(x-1)(x-3)=0

x1=1

x2=3

方法三:

x=[4±√(-4)²-4×3]/2

x=(4±2)/2

x1=3

x2=1

怎么解一元二次方程组

首先当a不等于0时方程:ax^2+bx+c=0才是一元二次方程。

1、公式法:Δ=b²-4ac,Δ<0时方程无解,Δ≥0时。

x=【-b±根号下(b²-4ac)】÷2a(Δ=0时x只有一个)

2、配方法e79fa5e98193e4b893e5b19e31333431336232:可将方程化为[x-(-b/2a)]²=(b²-4ac)/4a²

可解出:x=【-b±根号下(b²-4ac)】÷2a(公式法就是由此得出的)

3、直接开平方法与配方法相似。

4、因式分解法:核心当然是因式分解了看一下这个方程。

(Ax+C)(Bx+D)=0,展开得ABx²+(AD+BC)+CD=0与一元二次方程ax^2+bx+c=0对比得a=AB,b=AD+BC,c=CD。所谓因式分解也只不过是找到A,B,C,D这四个数而已。

扩展资料:

一元二次方程成立必须同时满足三个条件:

①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

②只含有一个未知数;

③未知数项的最高次数是2。

开平方法:

(1)形如  或  的一元二次方程可采用直接开平方法解一元二次方程 [5]  。

(2)如果方程化成  的形式,那么可得  。

(3)如果方程能化成  的形式,那么  ,进而得出方程的根。

(4)注意:

①等号左边是一个数的平方的形式而等号右边是一个常数。

②降次的实质是由一个一元二次方程转化为两个一元一次方程。

③方法是根据平方根的意义开平方。

参考资料来源:百度百科——一元二次方程

怎么区分 解一元二次方程的三种方法

一元二次方程的解法

一、知识要点:

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基

础,应引起同学们的重视。

一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2

的整式方程。

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解

法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

二、方法、例题精讲:

1、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的

方程,其解为x=m± .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以

此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

(2)解: 9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=

∴原方程的解为x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=-

方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2

方程左边成为一个完全平方式:(x+ )2=

当b2-4ac≥0时,x+ =±

∴x=(这就是求根公式)

例2.用配方法解方程 3x2-4x-2=0

解:将常数项移到方程右边 3x2-4x=2

将二次项系数化为1:x2-x=

方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2

配方:(x-)2=

直接开平方得:x-=±

∴x=

∴原方程的解为x1=,x2= .

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项

系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

例3.用公式法解方程 2x2-8x=-5

解:将方程化为一般形式:2x2-8x+5=0

∴a=2, b=-8, c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= = =

∴原方程的解为x1=,x2= .

4.因式分解法:把方程变形为一边是零e79fa5e98193e58685e5aeb931333332626631,把另一边的二次三项式分解成两个一次因式的积的形式,让

两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个

根。这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)

(1)解:(x+3)(x-6)=-8 化简整理得

x2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解。

(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解。

小结:

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般

形式,同时应使二次项系数化为正数。

直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式

法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程

是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法

解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方

法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

例5.用适当的方法解下列方程。(选学)

(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0

(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0

分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差

公式分解因式,化成两个一次因式的乘积。

(2)可用十字相乘法将方程左边因式分解。

(3)化成一般形式后利用公式法解。

(4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。

(1)解:4(x+2)2-9(x-3)2=0

[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0

(5x-5)(-x+13)=0

5x-5=0或-x+13=0

∴x1=1,x2=13

(2)解: x2+(2- )x+ -3=0

[x-(-3)](x-1)=0

x-(-3)=0或x-1=0

∴x1=-3,x2=1

(3)解:x2-2 x=-

x2-2 x+ =0 (先化成一般形式)

△=(-2 )2-4 ×=12-8=4>0

∴x=

∴x1=,x2=

(4)解:4x2-4mx-10x+m2+5m+6=0

4x2-2(2m+5)x+(m+2)(m+3)=0

[2x-(m+2)][2x-(m+3)]=0

2x-(m+2)=0或2x-(m+3)=0

∴x1= ,x2=

例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (选学)

分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我

们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方

法)

解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0

即 (5x-5)(2x-3)=0

∴5(x-1)(2x-3)=0

(x-1)(2x-3)=0

∴x-1=0或2x-3=0

∴x1=1,x2=是原方程的解。

例7.用配方法解关于x的一元二次方程x2+px+q=0

解:x2+px+q=0可变形为

x2+px=-q (常数项移到方程右边)

x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)

(x+)2= (配方)

当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)

∴x=- ±=

∴x1= ,x2=

当p2-4q<0时,<0此时原方程无实根。

说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母

取值的要求,必要时进行分类讨论。

练习:

(一)用适当的方法解下列方程:

1. 6x2-x-2=0 2. (x+5)(x-5)=3

3. x2-x=0 4. x2-4x+4=0

5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0

(二)解下列关于x的方程

1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0

练习参*:

(一)1.x1=- ,x2= 2.x1=2,x2=-2

3.x1=0,x2= 4.x1=x2=2 5.x1=x2=

6.解:(把2x+3看作一个整体,将方程左边分解因式)

[(2x+3)+6][(2x+3)-1]=0

即 (2x+9)(2x+2)=0

∴2x+9=0或2x+2=0

∴x1=-,x2=-1是原方程的解。

(二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a· a=0

[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0

∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0

∴x1= +b,x2= -b是 ∴x1= a,x2=a是

原方程的解。 原方程的解。

测试

选择题

1.方程x(x-5)=5(x-5)的根是( )

A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5

2.多项式a2+4a-10的值等于11,则a的值为( )。

A、3或7 B、-3或7 C、3或-7 D、-3或-7

3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个

根是( )。

A、0 B、1 C、-1 D、±1

4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( )。

A、b≠0且c=0 B、b=0且c≠0

C、b=0且c=0 D、c=0

5. 方程x2-3x=10的两个根是( )。

A、-2,5 B、2,-5 C、2,5 D、-2,-5

6. 方程x2-3x+3=0的解是( )。

A、 B、 C、 D、无实根

7. 方程2x2-0.15=0的解是( )。

A、x= B、x=-

C、x1=0.27, x2=-0.27 D、x1=, x2=-

8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( )。

A、(x-)2= B、(x- )2=-

C、(x- )2= D、以上答案都不对

9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( )。

A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1

答案与解析

答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D

解析:

1.分析:移项得:(x-5)2=0,则x1=x2=5,

注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。

2.分析:依题意得:a2+4a-10=11, 解得 a=3或a=-7.

3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax2+bx+c=a+b+c,意味着当x=1

时,方程成立,则必有根为x=1。

4.分析:一元二次方程 ax2+bx+c=0若有一个根为零,

则ax2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0.

另外,还可以将x=0代入,得c=0,更简单!

5.分析:原方程变为 x2-3x-10=0,

则(x-5)(x+2)=0

x-5=0 或x+2=0

x1=5, x2=-2.

6.分析:Δ=9-4×3=-3<0,则原方程无实根。

7.分析:2x2=0.15

x2=

x=±

注意根式的化简,并注意直接开平方时,不要丢根。

8.分析:两边乘以3得:x2-3x-12=0,然后按照一次项系数配方,x2-3x+(-)2=12+(- )2,

整理为:(x-)2=

方程可以利用等式性质变形,并且 x2-bx配方时,配方项为一次项系数-b的一半的平方。

9.分析:x2-2x=m, 则 x2-2x+1=m+1

则(x-1)2=m+1.

中考解析

考题评析

1.(甘肃省)方程的根是( )

(A) (B) (C) 或 (D) 或

评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确

选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元

二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为

C。

另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。

2.(吉林省)一元二次方程的根是__________。

评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。

3.(辽宁省)方程的根为( )

(A)0 (B)–1 (C)0,–1 (D)0,1

评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、

B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。

4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。

评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。

5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( )

(A)x=3+2 (B)x=3-2

(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2

评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方

根,即可选出答案。

课外拓展

一元二次方程

一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二

次的整式方程。 一般形式为

ax2+bx+c=0, (a≠0)

在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它

的倒数之和等于 一个已给数,即求出这样的x与,使

x=1, x+ =b,

x2-bx+1=0,

他们做出( )2;再做出 ,然后得出解答:+ 及 - 。可见巴比伦人已知道一元二次

方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。

埃及的纸草文书中也涉及到最简单的二次方程,例如:ax2=b。

在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。

希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中

之一。

公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x2+px+q=0的一个求根公

式。

在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种

不同的形式,令 a、b、c为正数,如ax2=bx、ax2=c、 ax2+c=bx、ax2+bx=c、ax2=bx+c 等。把二次方程分成

不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一 次

给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的

数学家们为了解三次方程而开始应用复数根。

韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。

我国《九章算术.勾股》章中的第二十题是通过求相当于 x2+34x-71000=0的正根而解决的。我国数学

家还在方程的研究中应用了内插法。

  • 热门焦点

最新推荐

猜你喜欢

热门推荐

手指甲上有白点怎么回事 小班第二学期安全计划是什么 20万左右买什么车好? 怎么通过身份证查询手机号 社保养老金退休后领取多少应该怎么计算的? 上海旅游攻略,最应该去那几个地方 春节吃饺子的由来和寓意是什么 春季幼儿卫生保健小常识 为什么很多人会长出智齿 应该如何在国家邮政局申诉网站投诉快递公司 微信定位 怎么办理准生证 怎样发海参最好? 2019个税新法专项附加项目有哪些如何扣除 营业执照如何网上年报? 微信群主应该怎样一键解散微信群 2019年个人所得税计算方法个人所得税计算公式 西安3天旅游攻略 怎么注销淘宝账号 窗花剪纸教程图解步骤是什么 幼儿园中班体育教案 小班下学期班级工作计划是什么 应该如何修改淘宝店铺名称 怎么注册个人所得税申报系统 起泡胶的做法是什么 圆柱应该怎么做? 消防安全知识培训资料有什么 营业执照查询方法是什么 应该怎么将微信里的视频下载到电脑 应该怎样下载视频到u盘 2019年春节电影上映时间表2019贺岁电影 毕业证丢失怎么补办 专硕与学硕最简单直观的区别是什么 公文函应该怎么写 公寓和普通住宅的区别是什么 应该如何入驻天猫?在天猫开店全部教程步骤 中班下学期家长工作计划 大班第二学期班务计划 中班下学期开学寄语有什么 可擦中性笔的使用注意事项是什么
Top