最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

对称矩阵一定存在逆矩阵吗

来源:动视网 责编:小OO 时间:2022-10-03 02:36:19
文档

对称矩阵一定存在逆矩阵吗

是的,若A^T=A则(A^-1)^T=(A^T)^-1=A^-1,所以A^-1是对称矩阵。对称矩阵是元素以对角线为对称轴对应相等的矩阵。1855年,埃米特证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。
推荐度:
导读是的,若A^T=A则(A^-1)^T=(A^T)^-1=A^-1,所以A^-1是对称矩阵。对称矩阵是元素以对角线为对称轴对应相等的矩阵。1855年,埃米特证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。


是的,若A^T=A则(A^-1)^T=(A^T)^-1=A^-1,所以A^-1是对称矩阵。对称矩阵是元素以对角线为对称轴对应相等的矩阵。1855年,埃米特证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。

文档

对称矩阵一定存在逆矩阵吗

是的,若A^T=A则(A^-1)^T=(A^T)^-1=A^-1,所以A^-1是对称矩阵。对称矩阵是元素以对角线为对称轴对应相等的矩阵。1855年,埃米特证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top