最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 教育 - 知识百科 - 正文

拉格朗日中值定理

来源:懂视网 责编:韦小宝 时间:2022-07-09 10:23:10
文档

拉格朗日中值定理

1、 拉格朗日中值定理是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系;2、拉格朗日中值定理沟通了函数与其导数的联系,在研究函数的单调性、凹凸性以及不等式的证明等方面,都可能会用到拉格朗日中值定理。
推荐度:
导读1、 拉格朗日中值定理是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系;2、拉格朗日中值定理沟通了函数与其导数的联系,在研究函数的单调性、凹凸性以及不等式的证明等方面,都可能会用到拉格朗日中值定理。

拉格朗日中值定理是什么?下面就由小编来带给大家详细介绍一下吧:

 拉格朗日中值定理(又称:拉氏定理、有限增量定理)是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。定理的现代形式如下:如果函数f(x)在闭区间上[a,b]连续,在开区间(a,b)上可导,那么在开区间(a,b)内至少存在一点ξ使得f'(ξ)=(f(b)-f(a))/(b-a)。

 1797年,拉格朗日中值定理被法国数学家拉格朗日在《解析函数论》中首先给出,并提供了最初的证明。现代形式的拉格朗日中值定理是由法国数学家O.博内给出。

 拉格朗日中值定理沟通了函数与其导数的联系, 在研究函数的单调性、凹凸性以及不等式的证明等方面, 都可能会用到拉格朗日中值定理。

 

拉格朗日(Lagrange)中值定理]若函数f(x)满足条件:

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得

推论1:如果函数f(x)在区间(a,b)内任意一点的导数f'(x)都等于零,那么函数f(x)在(a,b)内是一个常数。

 推论2:如果函数f(x)与g(x)在区间(a,b)内每一点的导数f'(x)与g'(x)都相等,则这两个函数在区间(a,b)内至多相差一个常数,即f(x)=g(x)+C,x∈(a,b).这里C是一个确定的常数。

文档

拉格朗日中值定理

1、 拉格朗日中值定理是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系;2、拉格朗日中值定理沟通了函数与其导数的联系,在研究函数的单调性、凹凸性以及不等式的证明等方面,都可能会用到拉格朗日中值定理。
推荐度:
标签: 定理 拉格朗
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top