可积一定可导吗
来源:动视网
责编:小OO
时间:2023-09-08 22:03:53
可积一定可导吗
不一定;可积不一定可导的,连续函数即使连续的可积函数也不一定可导;y=|x|,连续的可积函数在0点不可导;但是如果是连续函数的原函数的话,那么一定可导。可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分;否则,称函数为“黎曼可积”(也即黎曼积分存在),或者“Henstock-Kurzweil可积”等等。黎曼积分在应用领域取得了巨大的成功,但是黎曼积分的应用范围因为其定义的局限而受到;勒贝格积分是在勒贝格测度理论的基础上建立起来的,函数可以定义在更一般的点集上,更重要的是它提供了比黎曼积分更广泛有效的收敛定理,因此,勒贝格积分的应用领域更加广泛。可积一定可导吗;不一定,可积不一定可导,如分段函数。
导读不一定;可积不一定可导的,连续函数即使连续的可积函数也不一定可导;y=|x|,连续的可积函数在0点不可导;但是如果是连续函数的原函数的话,那么一定可导。可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分;否则,称函数为“黎曼可积”(也即黎曼积分存在),或者“Henstock-Kurzweil可积”等等。黎曼积分在应用领域取得了巨大的成功,但是黎曼积分的应用范围因为其定义的局限而受到;勒贝格积分是在勒贝格测度理论的基础上建立起来的,函数可以定义在更一般的点集上,更重要的是它提供了比黎曼积分更广泛有效的收敛定理,因此,勒贝格积分的应用领域更加广泛。可积一定可导吗;不一定,可积不一定可导,如分段函数。

不一定
可积不一定可导的,连续函数即使连续的可积函数也不一定可导;y=|x|,连续的可积函数在0点不可导;但是如果是连续函数的原函数的话,那么一定可导。可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分;否则,称函数为“黎曼可积”(也即黎曼积分存在),或者“Henstock-Kurzweil可积”等等。黎曼积分在应用领域取得了巨大的成功,但是黎曼积分的应用范围因为其定义的局限而受到;勒贝格积分是在勒贝格测度理论的基础上建立起来的,函数可以定义在更一般的点集上,更重要的是它提供了比黎曼积分更广泛有效的收敛定理,因此,勒贝格积分的应用领域更加广泛。
可积一定可导吗
不一定,可积不一定可导,如分段函数
可积一定可导吗
不一定;可积不一定可导的,连续函数即使连续的可积函数也不一定可导;y=|x|,连续的可积函数在0点不可导;但是如果是连续函数的原函数的话,那么一定可导。可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分;否则,称函数为“黎曼可积”(也即黎曼积分存在),或者“Henstock-Kurzweil可积”等等。黎曼积分在应用领域取得了巨大的成功,但是黎曼积分的应用范围因为其定义的局限而受到;勒贝格积分是在勒贝格测度理论的基础上建立起来的,函数可以定义在更一般的点集上,更重要的是它提供了比黎曼积分更广泛有效的收敛定理,因此,勒贝格积分的应用领域更加广泛。可积一定可导吗;不一定,可积不一定可导,如分段函数。