最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

左右极限怎么理解

来源:动视网 责编:小OO 时间:2022-10-15 15:21:37
文档

左右极限怎么理解

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-)。函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+)。左右极限的求法其实只是从左边趋向与从右边趋向的问题,而做题时大多数情况都会相等,因为左右极限存在且相等在这点才有极限,计算方法好像没有什么区别,似乎显得没有意义。实际上并不如此,如分段函数就需要求不连续点的左右极限等。左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。懂视网【www.51dongshi.net】。
推荐度:
导读函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-)。函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+)。左右极限的求法其实只是从左边趋向与从右边趋向的问题,而做题时大多数情况都会相等,因为左右极限存在且相等在这点才有极限,计算方法好像没有什么区别,似乎显得没有意义。实际上并不如此,如分段函数就需要求不连续点的左右极限等。左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。懂视网【www.51dongshi.net】。


函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-)。函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+)。

左右极限的求法其实只是从左边趋向与从右边趋向的问题,而做题时大多数情况都会相等,因为左右极限存在且相等在这点才有极限,计算方法好像没有什么区别,似乎显得没有意义。实际上并不如此,如分段函数就需要求不连续点的左右极限等。

左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。

懂视网【www.51dongshi.net】

文档

左右极限怎么理解

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-)。函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+)。左右极限的求法其实只是从左边趋向与从右边趋向的问题,而做题时大多数情况都会相等,因为左右极限存在且相等在这点才有极限,计算方法好像没有什么区别,似乎显得没有意义。实际上并不如此,如分段函数就需要求不连续点的左右极限等。左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。懂视网【www.51dongshi.net】。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top