最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

二元一次方程专题复习讲义

来源:动视网 责编:小OO 时间:2025-09-26 05:38:58
文档

二元一次方程专题复习讲义

7-8二元一次方程组专题复习讲义姓名:第一一部分:二元一次方程组知识点1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。5、代入消元法解二元
推荐度:
导读7-8二元一次方程组专题复习讲义姓名:第一一部分:二元一次方程组知识点1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。5、代入消元法解二元
7-8二元一次方程组专题复习讲义          姓名:

第一一部分:二元一次方程组知识点

1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

5、代入消元法解二元一次方程组:

(1)基本思路:未知数又多变少。

(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。

(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这个方法叫做代入消元法,简称代入法。

(4)代入法解二元一次方程组的一般步骤:

1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”

2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。

3、解出这个一元一次方程,求出x的值,即“解”。

4、把求得的x值代入y=ax+b中求出y的值,即“回代”

5、把x、y的值用{联立起来即“联”

6、加减消元法解二元一次方程组

(1)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

(2)用加减消元法解二元一次方程组的解

1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。

2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。

3、解这个一元一次方程,求得一个未煮熟的值,即“解”。

4、将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即“回代”。

5、把求得的两个未知数的值用{联立起来,即“联”。

解二元一次方程组应用题的步骤:

1、一、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:

2、审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;

3、找:找出能够表示题意两个相等关系;

4、列:根据这两个相等关系列出必需的代数式,从而列出方程组;

5、解:解这个方程组,求出两个未知数的值;

6、答:在对求出的方程的解做出是否合理判断的基础上,写出答案

【基础知识回顾】

一、等式的概念及性质:

  1、等式:用“=”连接表示        关系的式子叫做等式

  2、等式的性质:

  1、性质①等式两边都加(减)         所得结果仍是等式即:若a=b,那么a±c=       

   2、性质2:等式两边都乘以或除以             (除数不为0)所得结果仍是等式 若:a=b,那么a c=          若a=b(c≠o)那么=         

【名师提醒:①用等式性质进行等式变形,必须注意“都”不被漏项

         ②等式两边都除以一个数式时必须保证它的值           】

二、方程的有关概念:

1、含有未知数的          叫做方程

2、使方程左右两边相等的          的值,叫做方程的组

3、          叫做组方程

4、方程两边都是关于未知数的          这样的方程叫做整式方程

三、一元一次方程:

  1、定义:只含有一个未知数,并且未知数的次数都是          的          方程叫做一元一次方程,一元一次方程一般可以化成          的形式

2、解一元一次方程的一般步骤:

1。          2。          3。          4。          5。          

【名师提醒:1、一元一次方程的解法的多步骤的一句分别是等式的性质和合并同类法则要注意灵活准确运用

            2、去分母时应注意不要漏乘项,移项时要注意。          】

四、二元一次方程组及解法:

二元一次方程的一般形式:ax+by+c=0(a.b.c是常数,a≠o,b≠o)

1、由几个含有相同未知数的         合在一起,叫做二元一次方程组

2、二元一次方程组中两个方程的         叫做二元一次方程组的解

3、解二元一次方程组的基本思路是:         

4、二元一次方程组的解法:①         ②         

【名师提醒:1、一个二元一次方程的解有        组,我们通常在实际应用中要求其正整数解 

x=a 

y=b

的形式

2、二元一次方程组的解应写 成

五、列方程(组)解应用题:

一般步骤:1、审:弄清题意,分清题目中的已知点和未知点;2、设:直接或间接设未知数

3、列:根据题意寻找等关系列方程(组);4、解:解这个方程(组),求出未知数的值

5、验:检验方程(组)的解是否符合题意

6:答:写出(名称)

【名师提醒:1、列方程(组)解应用题的关键是:         

            2、几个常用的等量关系:①路程=       X        ②工作效率=        】

第二部分:【重点考点例析】

 考点一:等式性质及一元一次方程的解法

例1  (2012•漳州)方程2x-4=0的解是             .    对应训练1.(2012•郴州)一元一次方程3x-6=0的解是          .

例2  (2012•厦门)解方程组:.     对应训练:2.(2012•南京)解方程组.

考点三:一次方程(组)的应用

例3  (2012•温州)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是(  )

A.    B.   C.      D. 

例4 (2012•天津)某通讯公司推出了移动电话的两种计费方式(详情见下表).

月使用费/元

主叫限定时间/分

主叫超时费/(元/分)

被叫

方式一581500.25免费
方式二883500.19免费
设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中

提供的信息回答下列问题:

(Ⅰ)用含有t的式子填写下表:

t≤150150<t<350

t=50t>350

方式一计费/元

58           108           
方式二计费/元

888888           
(Ⅱ)当t为何值时,两种计费方式的费用相等?(Ⅲ)当330<t<360时,你认为选用哪种计费方式省钱(直接写出结果即可).

例5  (2012•株洲)在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:

       小华:77分              小芳75分                小明:   ?  分

(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少分?

对应训练

3.(2012•宁夏)小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为(  )

A.            B. C.              D. 

4.(2012•淮安)某省公布的居民用电阶梯电价听证方案如下:

第一档电量第二档电量第三档电量
月用电量210度以下,每度价格0.52元

月用电量210度至350度,每度比第一档提价0.05元

月用电量350度以上,每度比第一档提价0.30元

例:若某户月用电量400度,则需交电费为210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元)

(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?

5.(2012•云南)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件.求该企业分别捐给甲、乙两所学校的矿泉水个多少件?

【聚焦山东中考】

1.(2012•滨州)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x,y分钟,列出的方程是(  )

A.        B. C.         D. 

    3.(2012•菏泽)已知是二元一次方程组的解,则2m﹣n的算术平方根为(  )

     A.±2    B.        C.    2    D.    4

4.(2012•临沂)关于x、y的方程组的解是,则|m﹣n|的值是(  )

     A.5    B.    3    C.    2    D.    1

5.(2012•聊城)儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价3倍少6元,那么书包和文具盒的标价各是多少元?

6.(2012•东营)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?

2012

◆例题解析

    例1(2011江苏扬州,24,10分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两个工程队先后接力完成。A工程队每天整治12米,B工程队每天整治8米,共用时20天。

(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:

       甲:                   乙: 

根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:

甲:x表示                    ,y表示                   ;乙:x表示                     ,y表示                   ;

(2)求A、B两工程队分别整治河道多少米?(写出完整的解答过程)

    例2 “5.12”汶川大地震后,灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶. (1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?

   

    例3  某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?

    

    例4  为满足用水量不断增长的需求,昆明市最近新建甲,乙,丙三个水厂,这三个水厂的日供水量共计11.8万m3,其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3.  (1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t土石,运输公司派出A型,B型两种载重汽车,A型汽车6辆,B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆,B型汽车6辆,分别运5次,也可把土石运完,那么每辆A型汽车,每辆B型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)

三、解答题

18.(2012•湖州)解方程组.

19.(2012•宿迁)学校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;汽车以40km/h的速度下坡,又以50km/h的速度走平路,共用了6h,问平路和坡路各有多远?

20.(2012•苏州)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?

21.(2012•南昌)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.

妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;

爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;

小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”

请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).

22.(2012•娄底)体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.

篮球排球
进价(元/个)

8050
售价(元/个)

9560
(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?

23.(2012•广西)有甲、乙两种车辆参加来宾市“桂中水城”建设工程挖渠运土,已知5辆甲种车和4辆乙种车一次可运土共140立方米,3辆甲种车和2辆乙种车一次可运土共76立方米.求甲、乙两种车每辆一次可分别运土多少立方米?

23.(2012•吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y的值.

24.(2012•海南)为了进一步推进海南国际旅游岛建设,海口市自2012年4月1日起实施《海口市奖励旅行社开发客源市场暂行办法》,第规定:“旅行社引进会议规模达到200人以上,入住本市A类旅游饭店,每次会议奖励2万元;入住本市B类旅游饭店,每次会议奖励1万元.”某旅行社5月份引进符合奖励规定的会议共18次,得到28万元奖金,求此旅行社引进符合奖励规定的入住A类和B类旅游饭店的会议各多少次?

25.(2012•江西)小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸、装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4cm.试求信纸的纸长与信封的口宽.

 

26.(2012•龙岩)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.

根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;

(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.

 

文档

二元一次方程专题复习讲义

7-8二元一次方程组专题复习讲义姓名:第一一部分:二元一次方程组知识点1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。5、代入消元法解二元
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top