知识梳理:
随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率
夯实基础
1.一个地区从某年起几年之内的新生儿数及其中男婴数如下:
时间范围 | 1年内 | 2年内 | 3年内 | 4年内 |
新生婴儿数 | 5544 | 9607 | 13520 | 17190 |
男婴数 | 2883 | 4970 | 6994 | 82 |
男婴出生的频率 |
(2)这一地区男婴出生的概率约是多少?
2.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )
A.必然事件 B.随机事件 C.不可能事件 D.无法确定
3.下列说法正确的是( )
A.任一事件的概率总在(0.1)内 B.不可能事件的概率不一定为0
C.必然事件的概率一定为1 D.以上均不对
4.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。
每批粒数 | 2 | 5 | 10 | 70 | 130 | 700 | 1500 | 2000 | 3000 |
发芽的粒数 | 2 | 4 | 9 | 60 | 116 | 282 | 639 | 1339 | 2715 |
发芽的频率 |
6.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?
古 典 概 型
知识梳理
1.正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;
2)每个基本事件出现的可能性相等;
2.掌握古典概型的概率计算公式:P(A)=
1.掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
2.从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
3现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
4从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
5现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率。
夯实基础
1.在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是( )
A. B. C. D.以上都不对
2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是
A. B. C. D.
3.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。
4.抛掷2颗质地均匀的骰子,求点数和为8的概率。
5.设有关于的一元二次方程.
(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
几 何 概 型
知识梳理:
1.几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
2.几何概型的概率公式:
P(A)=;
3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;
2)每个基本事件出现的可能性相等.
1判下列试验中事件A发生的概度是古典概型,还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;
(2)如课本图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。
2.某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.
3 在1万平方千米的海域中有40平方千米的架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?
4在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?
夯实基础
1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率。
2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率.
3.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是( )
A.0.5 B.0.4 C.0.004 D.不能确定
4.平面上画了一些彼此相距2a的平行线,把一枚半径r5. 取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大? 6.在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形,求这个正方形的面积介于36cm2 与81cm2之间的概率.