最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

因子分析(Factor Analysis)

来源:动视网 责编:小OO 时间:2025-09-26 05:22:31
文档

因子分析(Factor Analysis)

因子分析(FactorAnalysis)主成份(principalcomponent)分析是因子分析的一個特例,在此特例中,前面幾個主成份即為選定之共同因子。(A)定義:eigenvectorofeigenvalue則,(B)在(A)中即為主成份分析:尋找使得=有最大的變異且在(B)中,共同因子,尋找使得第一個共同因子貢獻最大變異,此變異(Communality)應為。但在PC中變異已標準化至1,故將在PC中係數改變至。而定義共同因子f1即為Y1,而其係數為取前面m個PC當作共同因子,則,wh
推荐度:
导读因子分析(FactorAnalysis)主成份(principalcomponent)分析是因子分析的一個特例,在此特例中,前面幾個主成份即為選定之共同因子。(A)定義:eigenvectorofeigenvalue則,(B)在(A)中即為主成份分析:尋找使得=有最大的變異且在(B)中,共同因子,尋找使得第一個共同因子貢獻最大變異,此變異(Communality)應為。但在PC中變異已標準化至1,故將在PC中係數改變至。而定義共同因子f1即為Y1,而其係數為取前面m個PC當作共同因子,則,wh
因子分析 (Factor Analysis)

    主成份(principal component) 分析是因子分析的一個特例,在此特例中,前面幾個主成份即為選定之共同因子。

(A)   

      

                         

      

      定義: eigenvector of eigenvalue 

                 

            

      則

      , 

(B)   

                         

      

在(A)中即為主成份分析:尋找使得= 有最大的變異

在(B)中,共同因子,尋找使得第一個共同因子貢獻最大變異,此變異(Communality)應為。但在PC中變異已標準化至1,故將在PC中係數改變至。

而定義共同因子 f1 即為Y1,而其係數為

取前面m個PC當作共同因子,則

, where 

共同因子模式

                  

  共同因子,  

   特有因子,  

:loading of ith observation on the jth common factor

則X之Variance-Covariance matrix, 

一般假設

(1)共同因子在分解成為: 

主要分解的變異部份為: 

共同因子所能解釋的部份:communality。

(2)若T為一 orthogonal matrix

, where, 

且,,

在因子分析中可旋轉至任一軸,使得共同因子容易解釋,經旋轉後之共同解釋變異部份不變。

一般步驟為先固定communalities為SMC(squared multiple correlation)

所得之作為communality(diagonal 部份之值)

此時Var-Cov matrix 成為

  (Reduced Correlation Matrix)

依照PC做法並旋轉使得係數(loading)之 variance 為最大(此種旋轉稱為Varimax),但此時矩陣不一定為正定,故eigenvalue可能出現負值。

資料分析講義:因子分析Factor Analysis

options nodate nonotes ps=60;

data factor1;

input pop school employ service house;

cards;

5700  12.8  2500  270  25000

1000  10.9   600   10  10000

3400   8.8  1000   10   9000

3800  13.6  1700  140  25000

4000  12.8  1600  140  25000

8200   8.3  2600   60  12000

1200  11.4   400   10  16000

9100  11.5  3300   60  14000

9900  12.5  3400  180  18000

9600  13.7  3600  390  25000

9600   9.6  3300   80  12000

9400  11.4  4000  100  13000

;

proc factor data=factor1;

run;

proc factor prior=smc data=factor1 preplot

rotate=varimax reorder plot;

run;

                                                                   

Initial Factor Method: Principal Components

                            Prior Communality Estimates: ONE

               Eigenvalues of the Correlation Matrix: Total = 5  Average = 1

                Eigenvalue    Difference    Proportion    Cumulative

           1    2.87331359    1.07665350        0.5747        0.5747

           2    1.79666009    1.58182321        0.3593        0.9340

           3    0.214836    0.11490283        0.0430        0.9770

           4    0.09993405    0.08467868        0.0200        0.9969

           5    0.01525537                      0.0031        1.0000

               2 factors will be retained by the MINEIGEN criterion.

                                       Factor Pattern

                                           FACTOR1   FACTOR2

                                POP        0.58096   0.802

                                SCHOOL     0.76704  -0.54476

                                EMPLOY     0.67243   0.72605

                                SERVICE    0.93239  -0.10431

                                HOUSE      0.79116  -0.55818

                              Variance explained by each factor

                                       FACTOR1   FACTOR2

                                      2.873314  1.796660

                        Final Communality Estimates: Total = 4.669974

                            POP    SCHOOL    EMPLOY   SERVICE     HOUSE

                       0.987826  0.885106  0.979306  0.880236  0.937500

                                                                          

Initial Factor Method: Principal Factors

                            Prior Communality Estimates: SMC

                            POP    SCHOOL    EMPLOY   SERVICE     HOUSE

                       0.968592  0.822285  0.969181  0.785724  0.847019

  Eigenvalues of the Reduced Correlation Matrix:  Total = 4.39280116  Average = 0.87856023

                Eigenvalue    Difference    Proportion    Cumulative

           1    2.73430084    1.01823217        0.6225        0.6225

           2    1.71606867    1.67650586        0.3907        1.0131

           3    0.03956281    0.008626        0.0090        1.0221

           4    -.02452345    0.04808427       -0.0056        1.0165

           5    -.07260772                     -0.0165        1.0000

        2 factors will be retained by the PROPORTION criterion.

                                       Factor Pattern

                                          FACTOR1   FACTOR2

                                SERVICE    0.879  -0.15847

                                HOUSE      0.74215  -0.57806

                                EMPLOY     0.71447   0.67936

                                SCHOOL     0.71370  -0.55515

                                POP        0.62533   0.76621

                              Variance explained by each factor

                                       FACTOR1   FACTOR2

                                      2.734301  1.716069

                        Final Communality Estimates: Total = 4.450370

                            POP    SCHOOL    EMPLOY   SERVICE     HOUSE

                       0.978113  0.8175  0.971999  0.797743  0.884950

                                                                       

Initial Factor Method: Principal Factors

                       Plot of Factor Pattern for FACTOR1 and FACTOR2

                                           FACTOR1

                                              1

                                         D   .9

                                             .8

                            E

                             B               .7                   C

                                                                    A

                                             .6

                                             .5

                                             .4

                                             .3

                                             .2

                                                                              F

                                             .1                               A

                                                                              C

              -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1  0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0T

                                                                              O

                                            -.1                               R

                                                                              2

                                            -.2

                                            -.3

                                            -.4

                                            -.5

                                            -.6

                                            -.7

                                            -.8

                                            -.9

                                             -1

             POP=A    SCHOOL=B    EMPLOY=C    SERVICE=D    HOUSE=E

                                                                      

Rotation Method: Varimax

                              Orthogonal Transformation Matrix

                                              1         2

                                    1      0.785   0.61446

                                    2     -0.61446   0.785

                                   Rotated Factor Pattern

                                           FACTOR1   FACTOR2

                                HOUSE      0.94072  -0.00004

                                SCHOOL     0.90419   0.00055

                                SERVICE    0.79085   0.41509

                                POP        0.02255   0.98874

                                EMPLOY     0.14625   0.97499

                              Variance explained by each factor

                                       FACTOR1   FACTOR2

                                      2.349857  2.100513

                        Final Communality Estimates: Total = 4.450370

                            POP    SCHOOL    EMPLOY   SERVICE     HOUSE

                       0.978113  0.8175  0.971999  0.797743  0.884950

                                                                        

Rotation Method: Varimax

                       Plot of Factor Pattern for FACTOR1 and FACTOR2

                                           FACTOR1

                                              1

                                             E

                                             .B

                                             .8           D

                                             .7

                                             .6

                                             .5

                                             .4

                                             .3

                                             .2

                                                                           C  F

                                             .1                               A

                                                                              C

              -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1  0 .1 .2 .3 .4 .5 .6 .7 .8 .9 A.0T

                                                                              O

                                            -.1                               R

                                                                              2

                                            -.2

                                            -.3

                                            -.4

                                            -.5

                                            -.6

                                            -.7

                                            -.8

                                            -.9

                                             -1

             POP=A    SCHOOL=B    EMPLOY=C    SERVICE=D    HOUSE=E

文档

因子分析(Factor Analysis)

因子分析(FactorAnalysis)主成份(principalcomponent)分析是因子分析的一個特例,在此特例中,前面幾個主成份即為選定之共同因子。(A)定義:eigenvectorofeigenvalue則,(B)在(A)中即為主成份分析:尋找使得=有最大的變異且在(B)中,共同因子,尋找使得第一個共同因子貢獻最大變異,此變異(Communality)應為。但在PC中變異已標準化至1,故將在PC中係數改變至。而定義共同因子f1即為Y1,而其係數為取前面m個PC當作共同因子,則,wh
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top