数学(文史类)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i为虚数单位,则复数(1+i)2=
(A) 0 (B)2 (C)2i (D)2+2i
2.设集合A={x11≤x≤5},Z为整数集,则集合A∩Z中元素的个数是
(A)6 (B) 5 (C)4 (D)3
3.抛物线y2=4x的焦点坐标是
(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)
4.为了得到函数y=sin的图象,只需把函数y=sinx的图象上所有的点
(A)向左平行移动个单位长度 (B) 向右平行移动个单位长度
(C) 向上平行移动个单位长度 (D) 向下平行移动个单位长度
5.设p:实数x,y满足x>1且y>1,q: 实数x,y满足x+y>2,则p是q的
(A)充分不必要条件 (B)必要不充分条件
(C) 充要条件 (D) 既不充分也不必要条件
6.已知a函数f(x)=x3-12x的极小值点,则a=
(A)-4 (B) -2 (C)4 (D)2
7.某公司为激励创新,计划逐年加大研发奖金投入。若该公司2021年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是
(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)学科&网
(A)2022年 (B) 2021年 (C)2022年 (D)2021年
8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为
(A)35 (B) 20 (C)18 (D)9
9.已知正三角形ABC的边长为,平面ABC内的动点P,M满足,则的最大值是
(A) (B) (C) (D)
10. 设直线l1,l2分别是函数f(x)= 图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B则则△PAB的面积的取值范围是
(A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)
11、=。
12、已知某三菱锥的三视图如图所示,则该三菱锥的体积。学科&网
13、从2、3、8、9任取两个不同的数值,分别记为a、b,则为整数的概率= 。
14、若函数f(x)是定义R上的周期为2的奇函数,当0 ①若点A的“伴随点”是点,则点的“伴随点”是点A. ②单元圆上的“伴随点”还在单位圆上。 ③若两点关于x轴对称,则他们的“伴随点”关于y轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线。 其中的真命题是 。 16、(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5), [0.5,1),……[4,4.5]分成9组,制成了如图所示的频率分布直方图。 (I)求直方图中的a值; (II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (Ⅲ)估计居民月均用水量的中位数。 17、(12分) 如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=½AD。 (I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;学科&网 (II)证明:平面PAB⊥平面PBD。 18、(本题满分12分) 在△ABC中,角A,B,C所对的边分别是a,b,c,且。 (I)证明:sinAsinB=sinC; (II)若,求tanB。 19、(本小题满分12分) 已知数列{an}的首项为1, Sn为数列{an}的前n项和,Sn+1=Sn+1,其中q﹥0,n∈N+ (Ⅰ)若a2,a3,a2+ a3成等差数列,求数列{an}的通项公式; (Ⅱ)设双曲线x2﹣=1的离心率为en,且e2=2,求e12+ e22+…+en2, 20、(本小题满分13分) 已知椭圆E:+=1(a﹥b﹥0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上。 (Ⅰ)求椭圆E的方程; (Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:︳MA︳·︳MB︳=︳MC︳·︳MD︳ 21、(本小题满分14分) 设函数f(x)=ax2-a-lnx,g(x)=-,其中a∈R,e=2.718…为自然对数的底数。 (Ⅰ)讨论f(x)的单调性; (Ⅱ)证明:当x>1时,g(x)>0; (Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立。 2021年普通高等学校招生全国统一考试(四川卷) 数学(文史类)试题参 一、选择题 1.C 2.B 3.D 4. A 5.A 6.D 7.B 8.C 9.B 10.A 二、填空题 11.12.13.14.-2 15.②③ 三、解答题 16.(本小题满分12分) (Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08×0.5=0.04. 同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02. 由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5×a+0.5×a, 解得a=0.30. (Ⅱ)由(Ⅰ),100位居民月均水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.13=36000. (Ⅲ)设中位数为x吨. 因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5, 而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5 所以2≤x<2.5. 由0.50×(x–2)=0.5–0.48,解得x=2.04. 故可估计居民月均用水量的中位数为2.04吨. 17.(本小题满分12分) ()取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下: 因为AD‖BC,BC=AD,所以BC‖AM, 且BC=AM. 所以四边形AMCB是平行四边形,从而CM‖AB. 又AB 平面PAB,CM 平面PAB, 所以CM∥平面PAB. (说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点) ()由已知,PA⊥AB, PA⊥CD, 因为AD∥BC,BC=AD,所以直线AB与CD相交, 所以PA⊥平面ABCD. 从而PA⊥BD. 因为AD∥BC,BC=AD, 所以BC∥MD,且BC=MD. 所以四边形BCDM是平行四边形. 所以BM=CD=AD,所以BD⊥AB. 又AB∩AP=A,所以BD⊥平面PAB. 又BD 平面PBD, 所以平面PAB⊥平面PBD. 18.(本小题满分12分) (Ⅰ)根据正弦定理,可设 则a=ksin A,b=ksin B,c=ksinC. 代入中,有 ,可变形得 sin A sin B=sin Acos B=sin (A+B). 在△ABC中,由A+B+C=π,有sin (A+B)=sin (π–C)=sin C, 所以sin A sin B=sin C. (Ⅱ)由已知,b2+c2–a2=bc,根据余弦定理,有 . 所以sin A=. 由(Ⅰ),sin Asin B=sin Acos B +cos Asin B, 所以sin B=cos B+sin B, 故tan B==4. 19.(本小题满分12分) (Ⅰ)由已知, 两式相减得到. 又由得到,故对所有都成立. 所以,数列是首项为1,公比为q的等比数列. 从而. 由成等差数列,可得,所以,故. 所以. (Ⅱ)由(Ⅰ)可知,. 所以双曲线的离心率. 由解得.所以, , 20.(本小题满分13分) ()由已知,a=2b. 又椭圆过点,故,解得. 所以椭圆E的方程是. ()设直线l的方程为,, 由方程组得,① 方程①的判别式为,由,即,解得. 由①得. 所以M点坐标为,直线OM方程为, 由方程组得. 所以. 又 . 所以. 21.(本小题满分14分) (I) <0,在内单调递减. 由=0,有. 当时,<0,单调递减; 当时,>0,单调递增. (II)令=,则=. 当时,>0,所以,从而=>0. (iii)由(II),当时,>0. 当,时,=. 故当>在区间内恒成立时,必有. 当时,>1. 由(I)有,从而, 所以此时>在区间内不恒成立. 当时,令=(). 当时,=. 因此在区间单调递增. 又因为=0,所以当时,=>0,即>恒成立. 综上,.