最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

全国各省职高数学高考模拟试卷

来源:动视网 责编:小OO 时间:2025-09-26 04:17:01
文档

全国各省职高数学高考模拟试卷

职高数学高考模拟试题一、单项选择题:1.设集合A={-3,0,3},B={0},则()A.B=B.B∈AC.ABD.BA2.函数y=lg(x+1)的定义域是()A.B.[0,+∞]C.(-1,+∞)D.(1,+∞)3.已知函数,则()A.8B.6C.4D.24.已知一个圆的半径是2,圆心点是A(1,0),则该圆的方程是()A.(x-1)2+y2=4B.(x+1)2+y2=4C.(x-1)2+y2=2D.(x+1)2+y2=25.已知a=4,b=9,则a与b的等比中项是()A.±B.±6C.6D
推荐度:
导读职高数学高考模拟试题一、单项选择题:1.设集合A={-3,0,3},B={0},则()A.B=B.B∈AC.ABD.BA2.函数y=lg(x+1)的定义域是()A.B.[0,+∞]C.(-1,+∞)D.(1,+∞)3.已知函数,则()A.8B.6C.4D.24.已知一个圆的半径是2,圆心点是A(1,0),则该圆的方程是()A.(x-1)2+y2=4B.(x+1)2+y2=4C.(x-1)2+y2=2D.(x+1)2+y2=25.已知a=4,b=9,则a与b的等比中项是()A.±B.±6C.6D
职高数学高考模拟试题

一、单项选择题:

 1.设集合A={-3,0,3},B={0},则(      )

A. B=     B. B∈A      C. AB    D. BA

2.函数y=lg(x+1)的定义域是 (    )

A.      B.[0,+∞]      C.(-1,+∞)     D.(1,+∞) 

3.已知函数,则(      )

  A.8       B.6      C.4      D.2

4.已知一个圆的半径是2,圆心点是A(1,0),则该圆的方程是(    )

A.(x-1)2+ y2=4 B.(x+1)2+y2=4  C. (x-1)2+y2=2  D. (x+1)2+y2=2

5.已知a=4, b=9,则a与b的等比中项是(    )

A.±      B. ± 6       C. 6       D.-6 

6.同时抛掷两枚均匀的硬币,出现两个反面的概率是(    )

A.     B.       C.       D. 

7.下列命题中正确的是(      )

A.平行于同一平面的两直线平行 

B.垂直于同一直线的两直线平行

C.与同一平面所成的角相等的两直线平行

D.垂直于同一平面的两直线平行

8.若a、b是任意实数,且,则(    ).

A.   B.    C.    D. 

9.下列函数中,在区间上是增函数的是(    ).

A.   B.     C.    D. 

10.平面内一点A和平面外一点B的连线AB与平面内任意一条直线的位置关系是(    ).

A.平行  B.相交   C.异面或平行   D.相交或异面

11.若命题甲:a = b,命题乙:| a | = | b |,那么(    ).

A.甲是乙的必要条件     B.甲是乙的充分条件

C.甲是乙的充要条件   

D.甲既不是乙的充分条件也不是乙的必要条件

12.过点P(1,2)且与直线平行的直线方程是(    ).

A.  B.  C.  D. 

13.下列各命题中是假命题的为(    ).

A.平行于同一个平面的两条直线平行

B.平行于同一条直线的两条直线平行

C.过平面外一点有无数条直线和该平面平行

D.过直线外一点有无数个平面和该直线平行

14.在y轴上的截距为5,且与x–3y+1=0垂直的直线方程为(    )

A.3x+y–5=0        B.x–3y+15=0

C.x–3y+5=0        D.3x–y–5=0

15.一圆锥的轴截面为正三角形,且底面半径为3cm的圆锥的体积是(    )

A.  B.   C.  D. 

16.(1)终边相同的角一定相等,(2)第一象限角都是锐角,(3)若a在第一象限内,则也必在第一象限,(4)小于90°的角是锐角,其中正确命题的个数是(    )

A.0     B.1    C.2    D.3

17.根据sin 与cos 异号,可确定 所在的象限为(    )

A.一或二    B.二或三  C.二或四    D.三或四

18.设M={x|x2,x∈R},P={x|x 2–x–2=0,x∈R},则是(    )

A.     B.M    C.M∪{–1}     D.P

19.已知,则x所在的象限是 (    )

A.第一象限   B.第二象限   C.第三象限 D.第四象限

20.两条直线垂直于同一条直线,这两条直线(    )

A.平行        B.相交    

C.异面直线        D.相交、异面或平行

21.已知,那么tan的值等于(    )

A.     B.     C.     D. 

22.已知圆x2 +y2 +ax+by–6=0的圆心在点(3,4),则圆的半径为(    )

A.    B.5     C.    D. 

23.直线y–2x+5=0与圆x2+y2–4x+2y+2=0,图形之间关系是(    )

A.相离                  B.相切

C.相交但不过圆心        D.相交且过圆心

24.经过原点且倾斜角是直线的倾斜角2倍的直线方程是(    )

A.x=0    B.y=0    C.y=    D.y=

25.下列关系中,正确的是(    )

A.    B.{0}=   C.   D. 

26.下列各组函数f(x)与(x)中,表示同一函数的是(    )

A.f(x)=x与(x)=        B.f(x)=2lnx与(x)=lnx2

C.f(x)=1与(x)=sin2x+cos2x    D.f(x)=与(x)=()2

27.下列函数中在是偶函数的是(    )

A.y=log2x   B.y=–x2     C.y=()x      D.y=

28.“直线的倾斜角是锐角”是“直线斜率为正值”的(    )

A.充分非必要条件        B.必要非充分条件

C.充要条件        D.非充分非必要条件

29.右图是y=ax和y=bx(a、b均大于零且不等于1)的图像,则a、b的大小关系是(    )

A.a>b>1   B.030.方程lg(x2+11x+8)=1+lg(x+1)的解集是(    )

A.{–2}  B.{1}  C.{–2,1}   D.

31.若直线 y =-2x+1与直线y=kx+3平行,则k=(    )

A.-2         B.2        C.  -      D. 

32.已知集合A={x | x –2>0},B={x | x –5<0},则下列结论中正确的是(    ).

A.        B. 

C.        D. 

33.不等式的解集是(    )

A.{x|–1020}

C.{x|x>–10}        D.{x|x<20}

34.设函数f(x)=ax(a>0且a≠1)满足f(2)=9,则f()等于(    )

A.    B.     C.3     D. 

35.a、b、c成等比数列是b2=ac成立的(    )

A.充分条件    B.必要条件

C.充分必要条件    D.既不是充分条件也不是必要条件

36.在等差数列{an}中已知公差d=且a1+a3+a5+…+a99=60,则a1+a2+a3+…+a100的值为(    )

A.120     B.150    C.170    D.145

37.经过点(1,–1)且与直线2x–y+3=0垂直的直线方程是(    )

A.2y+x+2=0   B.2y+x=0   C.2y–x+3=0    D.2y+x+1=0

38.不等式的解集是(    )

A.{x|x0}    B.{x|0x<1}   C.{x|x>1}   D.{x|x0或x>1}

39.已知f(x)=x2–2ax+3在区间(1,+∞)上是增函数,则a的取值范围是(    )

A.      B.       C.       D. 

40.下列关系中,正确的是(    )

A.  B.{0}=     C.   D. 

41.已知两个集合P={x|x2 =1}与Q={–1,1},下列关系正确的是(    )

A.P Q    B.P Q    C.P=Q     D.P∩Q=

42.下列命题中,正确的是(    )

A.若a>b,则ac>bc        B.若ac2 >bc2,则a>b

C.若a>b,则ac2 >bc2        D.若a>b,c>d,则ac>bd

43.在同一直角坐标系中,函数y=x+a与函数y=ax的图像只可能是(    )

    A           B          C           D

44.已知向量a=(a1,a2),b =(b1,b2),则a·b =(    )

A.a1 b1 +a2 b2   B.a1 a2 +b1 b2    C.a1 b2 +a2 b1    D.a1b1–a2b2

45.等比数列,,,,…的公比是(    )

A.     B.–    C.2    D.–2

46.已知集合A={–2,0,1},那么A的非空真子集的个数是(    )

A.5    B.6    C.7    D.8

47.下列命题中正确的是(    )

A.若ac>bc,则a>b        B.若a2>b2 ,则a>b

C.若,则a>b        D.若,则a>b

48.若角, 的终边相同,则角 – 的终边在(    )

A.x轴的正半轴        B.x轴的负半轴

C.y轴上        D.没有准确位置

49. 角终边上的一点M(3,y),且sin=,则y等于(    )

A.4和–4     B.4       C.–4      D.4n(n∈Z)

50.下列说法中不正确的是(    )

A.经过不共线三点有一个平面    B.经过三点,可能有一个平面

C.经过三点,确定一个平面          D.经过不共线三点,有且只有一个平面

51.直线经过(0,0),(–1,–1)两点, 是的倾斜角,那么(    )

A.sin=1    B.cos =0    C. =45°    D. =2k+(k∈Z)

52.设M={x|x},a=3,则下列各式正确的是(    )

A.aM     B.aM    C.{a}M    D.{a}M

53.若命题甲:a>0,命题乙:a2>0,则(    )

A.命题甲是命题乙的充要条件

B.命题甲是命题乙的充分条件

C.命题甲是命题乙的必要条件

D.命题甲既不是命题乙的充分条件也不是命题乙的必要条件

54.下列等式中正确的是(    )

A.sin(+)=sin        B.sin(–)=sin

C.cos(+)=cos        D.cos(–)=cos

55.已知线段AB的中点为C,且A(–1,7),C(2,2),则点B的坐标是(    )

A.(5,–3)    B.(–5,3)   C.   D. 

56.在下列条件中,可以确定一个平面的条件是(    )

A.空间里任意三点            B.空间里任意两点

C.一条直线和这条直线外一点  D.空间里任意两条直线

57.设集合M={x|x∈R,x>–1},N={x|x∈R,x<3},则M∩N为(    )

A.{x|x∈R,x>–1}        B.{x|x∈R,x<3}

C.{x|x∈R,–158.设为任意实数,则sin(+5)等于(    )

A.sin    B.cos   C.–sin   D.–cos

59.若,则a的取值范围是(    )

A.a>1 B.a<0    C.060. 已知是等比数列,则=(   )

A. 12        B.18       C. 24        D.36

61.不等式(x—3)(2x—1)>0的解集是:

   

62.直线的倾斜角是(    )

   A、60° B、120°     C、30°     D、150°

63.两条直线2x+y+1=0和x—2y—3=0的位置关系是:

   A、平行  B、重合    C、相交但不垂直        D、垂直

.下列命题正确的是(    )

A.若a>b,则a2>b2    B.若a2>b2,则a>b

C.若|a|>|b|,则a2>b2       D.若a65.下列函数既是奇函数又是增函数的是(    )

A.     B.       C.       D. 

66.函数是(    )

A.周期为3的偶函数        B.周期为3的奇函数

C.周期为2的偶函数        D.周期为2的奇函数

67.函数y = 2tan3x的定义域为(    )

   A.    B. 

   C.        D. 

68.设x,y为实数,则x2 = y2的充分必要条件是(    )

   A.x = y     B.x = –y     C.x3 = y3    D.| x | = | y |

69.点P(0, 1)在函数y = x2 + ax + a的图像上,则该函数图像的对称轴方程为(    )

   A.x = 1   B.   C.x = –1    D. 

70.不等式x2 + 1>2x的解集是(    )

   A.{x|x  1,x∈R}    B.{x|x>1,x∈R}

   C.{x|x  –1,x∈R}    D.{x|x  0,x∈R}

71.点(2, 1)关于直线y = x的对称点的坐标为(    )

   A.(–1, 2)  B.(1, 2)   C.(–1, –2)    D.(1, –2)

72.在等比数列{an}中,a3a4 = 5,则a1a2a5a6 =(    )

   A.25    B.10    C.–25     D.–10

73.掷三枚硬币,恰有一枚硬币国徽朝上的概率是(    )

A.      B.      C.     D. 

74.函数y =的定义域是(    )

A.[–1,4]    B.(– ,–4)∪[1,+ ]    

C.[– 4,1]    D.(– ,–1)∪[4,+ ]

75.若M ={0,1,2},则有(    )

   A.    B.1∈M     C.{0} M    D.0 

76.在等比数列中,已知, =63,则首项为(      )

A.32        B.24       C.16          D.18

77.下列函数中,为偶函数的是(    )

① f (x) = x + 2  ② f (x) = x2,x (–1, 1) ③ f (x) = 0  ④ f (x) = (1 – x)(1 + x)  ⑤ f (x) = x2 – 2x ⑥ f (x) = cosx

   A.②③④   B.③④⑤    C.②④⑥   D.③④⑥

78.条件甲:x2 + y2 = 0是条件乙:xy = 0的

A.充分非必要条件        B.必要非充分条件

C.充分必要条件        D.既非充分也必必要条件

79.a  0时,的值是(   )

A.    B.     C.     D. 

80. 等差数列{an}的公差为2,首项为–2,则a10=    (  )

A. 22     B. 20      C. 18     D.16

第题图

81. 圆的半径为2,则(    )

A. 1   B. 2    C. 3     D. 4

82. 二次函数的图像如图,则它的解析式为(    )

A.    B. 

C.    D. 

83. 过点(3,0),倾斜角为135°的直线的方程为    (    )

A.        B. 

C.        D. 

84.函数在区间上的最大值是(   )

A.    B. 19     C. 11     D. 10

85.已知数列中,,则(    )

A. 30        B. 27       C. 33      D. 36 

86.设是等比数列,如果,则(   )

A.36      B.12       C.16         D.48

87.下列等价关系中错误的是(     ).

A             B 

C          D 

88.设函数,则(      )

A.      B. 15       C.        D. 7

.若,则为   (   )

 A.   B.   C.    D. 

90. 函数的图像上的点是(   )

A.(-1,0)     B.(0,-1)     C.(0,1)      D.(1,0)

91. 已知圆x2+y2=2与直线y=x+b有两个不同的公共点,则实数b的取值范围是(    )

A.b>2   B.b<–2   C.b>2或b<–2   D.–292.已知,则下列说法正确的是(     )

A.y=sinx是增函数                   B.y=sinx是减函数

C.y=cosx是增函数                   D.y=cosx是减函数

二、填空题:

1. 设a=x2+2x,b=x2+x+2,若x>2,则a、b 的大小关系是________.

2.已知正方体的表面积是54cm2,则它的体积是__________.

3.已知数列{an}的通项公式an=cos,则该数列的第12项为     .

4.两平行线3x+4y+5=0和6x+8y-15=0之间的距离是         .

5.实数x,y,z成等数差列,且x+y+z=6,则y=               .

6.设3<<27,则 x的取值范围是            .           

7.已知,,则实数的取值范围是______.

8.某工厂生产产品,用传送带将产品放入下一工序,质检人员每隔10分钟在传送带上某一固定位置取一件检验,这种抽样方法是                    

9.从一堆苹果中任取5只,称得它们的质量为(单位:克):125 124 121 123 127则该样本标准差s=________(克)(用数字作答)

10.若,则x =      .

11.已知△ABC中,,则AB边上的中线所在直线的方程是      .

12.圆的圆心坐标是      .

13.在平面直角坐标系xOy中,30°角的终边与单位圆相交于点P,点P(_____,_____).

14.如果二次函数y=x2 +mx+(m+3)有两个不相等的实数根,则m的取值范围是     .

15.满足且的角有     个.

16.已知圆方程是:x2–2x+y2=0,则过点(2,1)且与该圆相切的直线方程是      .

17.函数的定义域是      ;周期是      

18.求和1+2+22+…+2n=         .

19.直线L 过点(0,1)且斜率为1,则其方程为         

18.已知a=(3, –1),b=(1, 2),则cos=      .

19.以O(0, 0),A(2, 0),B(0, 4)为顶点的三角形ABO的外接圆的方程为      

20.直线x+2y+1=0被圆(x–2)2 +( y–1)2 =9所截得的线段长等于____    

21. =    .

22.若函数f (x)是偶函数,且f (1)=1,那么f(–1)=    .

23.在直角坐标系中,原点到直线x+y–1=0的距离为    .

24.若直线a2x+2y–a=0与直线2x–y–1=0垂直,则a=    .

25.若直线y=x+b过圆x2 +y2–4x+2y–4=0的圆心,则b=    .

26.在等差数列{an}中,若公差为,且a1 +a3 +a5 +…+a99 =60,则a1 +a2 +a3 +…+a100=    .

27.甲乙两人各进行一次射击,如果两人击中目标的概率都是0.6,那么两人同时击中目标的概率是    .

28.圆锥的轴截面是正三角形,体积是93,则它的侧面积是      .

29.若方程x2+y2+(1–m)x+1=0表示圆,则m的取值范围是 ______

30.已知角的终边经过点P(3,–4),则sin+cos=_________.

31.已知,则_________.

32.已知二次函数y=x2–(m+2)x+4的图像与x轴有交点,则实数m的取值范围是    .

33.方程3x—9=0的解是_______

34.函数f(x),当x = –5时的函数值是        .

35.数列{an},若a1=3,an+1–an=3,a101=         .

36.已知两点A(5,–4)、B(–1,4),则=        .

37.已知向量a ={3,2},b ={– 4,x},且a⊥b,则x =    .

38.设球的表面积为100cm2,一个平面截球得小圆的半径为3cm,则球心到该截面的距离为           cm.

39.已知{an}是等差数列,且a3 + a11 = 40,则a6 + a7 + a8 =      

40.1+3+5+…+99=    

41. 已知向量,且,则x是_______

42.若向量,,则向量的模                  

43.不等式的解集是_________________

44. 圆心为C(2,-1)且过A(-1,3)的圆的方程为            

45.已知<,>=,||=3,||=2则=___________

46. 已知____________

47. 求函数的单调递增区间        ,值域         

48.设直线a与b是异面直线,直线c∥a,则b与c的位置关系是              

三.解答题:(解答应写出过程或步骤)。

1. 

2.已知a=(-3,5), =(-15,m).

⑴当实数m为何值时,⊥;    ⑵当实数m为何值时∥。

3.求与直线2x-y+1=0平行且与圆x2+y2+2y-19=0相切的直线方程

4.已知函数f(x)=lg.

⑴f(-)+f(-)的值;⑵求证:函数f(x)为奇函数;⑶解不等式f(x)<1

5.已知函数y=ax2 +bx+c的图像经过(0,–1),(2,5),(–8,15)三点,求:(1)函数图像的顶点坐标和对称轴;(2)x取什么值时,函数是递增的、递减的;(3)函数有最大值还是最小值,其值是多少?

6.求函数f(x)=x2 +8x+3的最小值

 7.在等差数列{an}中,如果a3+a4+a5+a6+a7=900,求a2+a8的值.

8. 已知等差数列{an}前n项和Sn = –2n2 – n.

(1)求通项an的表达式;

(2)求a1 + a3 + a5 + … + a25的值.

9.一个金属屋分为上、下两部分,如图所示,下部分是一个柱体,高为2 m,底面为正方形,边长为5 m,上部分是一个锥体,它的底面与柱体的底面相同,高为3 m,金属屋的体积、屋顶的侧面积各为多少(精确到0.01) ?

  

文档

全国各省职高数学高考模拟试卷

职高数学高考模拟试题一、单项选择题:1.设集合A={-3,0,3},B={0},则()A.B=B.B∈AC.ABD.BA2.函数y=lg(x+1)的定义域是()A.B.[0,+∞]C.(-1,+∞)D.(1,+∞)3.已知函数,则()A.8B.6C.4D.24.已知一个圆的半径是2,圆心点是A(1,0),则该圆的方程是()A.(x-1)2+y2=4B.(x+1)2+y2=4C.(x-1)2+y2=2D.(x+1)2+y2=25.已知a=4,b=9,则a与b的等比中项是()A.±B.±6C.6D
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top