林敏赵军毛谦敏吕进
(中国计量学院计量技术工程学院,杭州,310018)
摘要提出了基于小波变换与混沌系统的微弱信号检测方法。根据小波变换具有的多分辩能力与混沌系统对微弱周期信号的敏感性和对噪声的免疫力,将混有强噪声的周期信号经小波变换处理后作为处于混沌临界状态的Duffing系统的输入,根椐系统状态从混沌到周期的相轨迹的变化来检测微弱周期信号。仿真结果表明,最低检测下限可达-166dB,检测信噪比可达-116db。
关键词小波变换混沌系统信号检测
Study of weak periodical signal detection based on wavelet transform and chaotic system
LIN Min, ZHAO Jun, MAO Qian-min, LU Jin
(College of Metrology Technology and Engineering, China Jiliang University,
HangZhou 310018,China)
Abstract: Based on wavelet transform and chaotic system, this paper puts forward a method for weak signal detection. According to the multi- resolution of the wavelet and the sensitivity of weak periodical signal and the immunity to noise of the chaotic system, we made the periodical signal with strong noise processed by wavelet as the input of the critical Duffing system, detecting the weak periodical signal by the transformation of the phase trajectory. It shown from the simulation that the detection lower limit is –166dB and the SNR (Signal Noise Ratio) is approximate to –116dB.
Key words: wavelet transform, chaotic system, signal detection
1.引言
强噪声背景下的周期信号检测是信号检测和信号处理研究的核心问题之一。相关研究成果一经问世,便迅速应用于雷达、物理、化学、地震、生物医学及海洋测控等多个领域[1][2]。微弱信号检测始于20世纪50年代,其处理方法在频域和时域并行发展[1]。20世纪90年代前后,人们利用非线性科学中的混沌理论检测强噪声背景下的有效信号,并取得了一系列进展[3][4][5][6]。
控制和利用混沌是当前应用基础研究的热门课题之一。混沌运动的基本特征是运动轨道的不稳定性,表现为对初值的敏感依赖性,或对小扰动的极端敏感性。利用混沌系统对参数的摄动及其敏感从而使系统周期解发生本质变化的特点进行微弱信号检测,就是将待测的微弱信号作为混沌系统的一种周期扰动,噪声虽然强烈,但对系统状态的改变无影响;因此,即使幅值极小的周期信号,也会使系统的状态发生本质的相变,通过辨识系统状态,可判定信号是否存在,从而将强噪声背景下的微弱周期信号检测出来。小波变换具有多分辨分析的
∗浙江省自然科学基金项目(编号 202081)和浙江省科技计划项目(编号2004C31032)作者简介:林敏,男,1962年生,汉,副教授,硕士,主要从事小波分析、信号检测与信号处理的研究。
能力,将小波变换与混沌系统有机地结合起来,可以构成一个性能更加优良的信号检测系统。本文首先对混有强噪声的周期信号进行小波变换,然后将降噪处理后的信号引入混沌检测系统,根椐系统状态从混沌到周期的相轨迹的变化来检测微弱周期信号。仿真结果表明,该方法对噪声抑制能力较强,具有较低的检测下限。
2.基于小波—混沌理论的检测方法
2.1 混沌检测系统的数学模型
Duffing 方程是简单的数理方程,它在机械和电子工程中有许多重要的应用。在非线性振动理论中研究Duffing 方程具有解剖一只麻雀的作用。本文利用此方程构成一混沌系统,方程具体形式为[5]:
(1) )cos()](1[5
3...t x t as x x k x T ωγ=++−+式中,为阻尼比,为待检测周期信号,k )(t as T )cos(t ωγ为内置信号。是参数微扰的幅度。当,即无参数微扰时,使系统处于混沌吸引子状态,一旦加上对非线性项系数的微弱周期扰动,则可以抑制混沌状态而转换到周期状态,根据系统状态轨迹的相变即可确定微弱周期信号的存在。