
----小组成员: 杨蓉 (04研 金融 2040202040 )
宗树峰(04研 金融 204020204027)
龚将军(04研 金融204020204082)
温仕周(04研 金融 204020204092)
摘要:利用外资与发展进出口贸易,是我国扩大对外开放过程中两个重要的方面,有效地提高了我们利用国内国外两种资源、两个市场的能力。利用外资和发展进出口贸易相互联系,相互促进。本文通过对近二十多年来我国发展实践的研究,认为二者是密不可分的。外资利用有力推动了我国进出口持续、健康的发展 ,并且外商直接投资的作用日益显著。
关键词:进出口 外资 外商直接投资
ABSTRACT: Utilizing foreign capital and developing export and import trade are two important aspects in our country's process of expanding opening to the outside world, which has effectively strengthened our ability to utilize two resources and market at home and abroad. The two aspects relate each other and promote as well. Through researching on the development practice of latest two decades of our country, this article holds that they are relate closely and couldn't be separated. The utilization of foreign capital promotes the sustainable and heath development of import and export, and the effect of foreign direct investment is increasingly outstanding. KEY WORDS: export and import foreign capital foreign direct invest
1 相关经济背景及问题提出…………………………………………3
1.1 我国外资利用的进程及作用……………………………………3
1.2 问题提出…………………………………………………………3
2 数据的收集和整理………………………………………………3
3 模型的建立…………………………………………………………5
4 模型的估计和检验……………………………………………………6
4.1 模型的估计……………………………………………………………………6
4.2 模型的检验……………………………………………………………………8
4.2.1 经济意义的检验…………………………………………………………8
4.2.2统计检验……………………………………………………………………8
4.2.3计量经济的检验…………………………………………………………10
5 总结性分析…………………………………………………………15
5.1 FL对进出口的影响作用减弱………………………………………………15
5.2 FDI对对外贸易的影响更加显著…………………………………………15
5.3 FOI在外资中的比例将会上升…………………………………………15
参考文献…………………………………………………………16
1 相关经济背景及研究目的
1.1我国外资利用的进程及作用
按照《中国对外经济贸易年鉴》划分,我国外资的来源主要有:对外借款、外商直接投资和外商其他投资。其中,对外借款包括:贷款、国际金融机构贷款,国外发行债券等;外商直接投资包括:合资经营企业、合作经营企业、外资企业、外商投资股份制企业、合作开发等;外商其他投资包括:对外发行股票、国际租赁、补偿贸易、加工装配等。
我国利用外资的历程分为三个阶段。第一阶段(建国至1978年),复杂的国际国内政治环境了我国对外资的利用,1956年以前主要是前苏联的援助,1956年中苏关系恶化,外资更是急剧减少。此阶段我国利用外资的渠道遭到封锁,外资数量极其有限。第二阶段(1979—1990年),中国与西方国家陆续建交,关系走上正常化。西方国家的资金开始逐步流进国门,如国外贷款,个别国外公司来华进行少量投资等,虽然此阶段我国利用外资的规模是在上升,但进展却很缓慢,而且形式以接受各国的贷款为主,形式单一。第三阶段:1991年至今,越来越多的公司来华进行规模巨大的系统投资。此阶段外商直接投资取代了对外借款,成为我国利用外资的主要形式。根据世界银行1994年度《世界投资报告》的统计,到1993年,我国已成为世界上继美国之后的第二大直接投资国,2002年实际利用外商直接投资逾500亿美元,首次超过美国,跃居世界第一。
随着我国利用外资数量的急剧增加,我国外贸进出口以年平均12.62%的速度迅猛增长,到2003年我国进出口总额达8000亿美元,居世界第四位,其中,仅外商直接投资企业的进出口总额在对外贸易总额中所占比例达56%。由此可见,利用外资对我国进出口贸易的作用巨大。
1.2问题提出
已有许多学者对我国外商直接投资和进出口贸易的关系进行了实证和计量分析。陈宪,陈晨对外商直接投资和进出口额进行了相关分析,证明了外商投资增长对进出口增长有一定的拉动作用。他们研究发现外商直接投资增长与当年进出口额增长有一定的相关性,相关系数为0.423,与后1-2年进出口增长的相关性减弱,到后3-4年相关系数又开始加强。原因是外商直接投资在当年通过带动进口刺激了对外贸易增长,数年后则通过推动出口对外贸增长再次产生影响。杨巡对1980-1997年外商直接投资与我国进出口的关系进行了相关分析,发现外商直接投资,特别是上一年累计外商直接投资与出口额和进口额之间都存在较高的正相关关系,相关系数分别为0.96和0.9465,外商直接投资对我国进出口贸易有着重要的促进作用。
以上这些研究主要是针对外商直接投资的研究,没有考虑外资的其他形式对进出口贸易的影响,本文基于以往研究的成果,在不考虑滞后效应的基础上全面考察外资的各种形式对进出口贸易的影响,并深入分析影响背后的原因。
2 数据的收集和整理
表一:我国进出口与利用外资状况
| 进出口贸易情况(亿美元) | 实际利用外资情况(亿美元) | |||||||
| 年份 | 进出口总额 | 出口总额 | 进口总额 | 差额 | 对外借款 | 外商直接 投资 | 外商其他 投资 | 总计 |
| 2003 | 8509.9 | 4382.3 | 4127.6 | 254.7 | 535.0467 | 26.4 | 841.4 | |
| 2002 | 6207.7 | 3256 | 2951.7 | 304 | 527.4286 | 22.7 | 700.1 | |
| 2001 | 5096.5 | 2661 | 2435.5 | 225.5 | 468.8 | 27.9 | 696.7 | |
| 2000 | 4742.9 | 2492 | 2250.9 | 241.1 | 100 | 407.2 | 86.4 | 593.6 |
| 1999 | 3606.3 | 1949.3 | 1657 | 292.3 | 102.12 | 403.19 | 21.28 | 526.59 |
| 1998 | 3239.5 | 1837.1 | 1402.4 | 434.7 | 110 | 454.63 | 20.94 | 585.57 |
| 1997 | 3251.6 | 1827.9 | 1423.7 | 404.2 | 120.21 | 452.57 | 71.3 | 4.08 |
| 1996 | 28.8 | 1510.5 | 1388.3 | 122.2 | 126.69 | 417.25 | 4.1 | 548.04 |
| 1995 | 2808.6 | 1487.8 | 1320.8 | 167 | 103.3 | 375.2 | 2.9 | 481.3 |
| 1994 | 2366.2 | 1210.1 | 1156.1 | 54 | 92.67 | 337.67 | 1.79 | 432.13 |
| 1993 | 1957 | 917.4 | 1039.6 | -122.2 | 111. | 275.15 | 2.56 | 3.6 |
| 1992 | 1655.3 | 849.4 | 805.9 | 43.5 | 79.11 | 110.07 | 2.84 | 192.02 |
| 1991 | 1357 | 719.1 | 637.9 | 81.2 | 68.88 | 43.66 | 3 | 115.54 |
| 1990 | 1154.4 | 620.9 | 533.5 | 87.4 | 65.3 | 34.9 | 2.7 | 102.9 |
| 19 | 1116.8 | 525.4 | 591.4 | -66 | 62.86 | 33.92 | 3.81 | 100.59 |
| 1988 | 1027.9 | 475.2 | 552.7 | -77.5 | .87 | 31.94 | 5.45 | 102.26 |
| 1987 | 826.5 | 394.4 | 432.1 | -37.7 | 58.05 | 23.14 | 3.33 | 84.52 |
| 1986 | 738.5 | 309.4 | 429.1 | -119.7 | 50.14 | 18.74 | 3.7 | 72.58 |
| 1985 | 696 | 273.5 | 422.5 | -149 | 25.06 | 16.58 | 2.98 | 44.62 |
| 年份 | 进出口总额 | 出口总额 | 进口总额 | 对外借款 | 外商直接 投资 | 外商其他 投资 | 总计 |
| 2003 | 9.0490 | 8.3853 | 8.3255 | 6.2824 | 3.2734 | 6.3304 | |
| 2002 | 8.7335 | 8.0883 | 7.9901 | 6.2680 | 3.1224 | 6.3101 | |
| 2001 | 8.5363 | 7.8865 | 7.7979 | 6.1502 | 3.3286 | 6.2080 | |
| 2000 | 8.44 | 7.8208 | 7.7191 | 4.6052 | 6.0093 | 4.4590 | 6.3862 |
| 1999 | 8.1904 | 7.5752 | 7.4128 | 4.6261 | 5.9994 | 3.0578 | 6.26 |
| 1998 | 8.0832 | 7.5159 | 7.2459 | 4.7005 | 6.1195 | 3.0417 | 6.3726 |
| 1997 | 8.0869 | 7.5109 | 7.2610 | 4.72 | 6.1149 | 4.2669 | 6.4678 |
| 1996 | 7.9721 | 7.3202 | 7.2358 | 4.8417 | 6.0337 | 1.4110 | 6.3063 |
| 1995 | 7.9404 | 7.3051 | 7.1860 | 4.6376 | 5.9275 | 1.07 | 6.1765 |
| 1994 | 7.7690 | 7.0985 | 7.0528 | 4.5290 | 5.8221 | 0.5822 | 6.0687 |
| 1993 | 7.5792 | 6.8215 | 6.9466 | 4.7175 | 5.6173 | 0.9400 | 5.9651 |
| 1992 | 7.4117 | 6.7445 | 6.6920 | 4.3708 | 4.7011 | 1.0438 | 5.2576 |
| 1991 | 7.2130 | 6.5780 | 6.4582 | 4.2324 | 3.77 | 1.0986 | 4.7496 |
| 1990 | 7.0513 | 6.4312 | 6.2795 | 4.1790 | 3.5525 | 0.9933 | 4.6338 |
| 19 | 7.0182 | 6.22 | 6.3825 | 4.1409 | 3.5240 | 1.3376 | 4.6111 |
| 1988 | 6.9353 | 6.1637 | 6.3148 | 4.1724 | 3.4639 | 1.6956 | 4.6275 |
| 1987 | 6.7172 | 5.9774 | 6.0687 | 4.0613 | 3.1416 | 1.2030 | 4.4370 |
| 1986 | 6.6046 | 5.7346 | 6.0617 | 3.9148 | 2.9307 | 1.3083 | 4.2847 |
| 1985 | 6.5453 | 5.6113 | 6.0462 | 3.2213 | 2.8082 | 1.0919 | 3.7982 |
3 模型的建立
下面分别建立利用外资的各个部分对我国出口、进口和进出口总额的影响的计量经济模型:
lnEX=β0+β1lnFDI+β2lnFL+β3lnFOI+ut,其中:
lnEX———取对数后的出口
lnFDI———取对数后的外商直接投资
lnFL———取对数后的对外借款
lnFOI———取对数后的外商其他投资
β0、β1、β2、β3均为待定系数
ut为随机误差项
lnIM=»α0+α1lnFDI+α2lnFL+α3lnFOI+et,其中:
lnIM———取对数后的进口
lnFDI———取对数后的外商直接投资
lnFL———取对数后的对外借款
lnFOI———取对数后的外商其他投资
α0、α1、α2、α3均为待定系数
et为随机误差项
lnXM=»λ0+λ1lnFDI+λ2lnFL+λ3lnFOI+ξ,其中:
lnXM———取对数后的进出口总额
lnFDI———取对数后的外商直接投资
lnFL———取对数后的对外借款
lnFOI———取对数后的外商其他投资
λ0、λ1、λ2、λ3均为待定系数,ξt为随机误差项
4 模型的估计和检验
4.1模型的估计
用Eviews对1985—2000年的数据进行多元回归得到:
| Dependent Variable: LNEX | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 12:05 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 3.608779 | 0.735721 | 4.905091 | 0.0004 |
| LNFDI | 0.367907 | 0.077038 | 4.775662 | 0.0005 |
| LNFL | 0.279393 | 0.235508 | 1.186341 | 0.2584 |
| LNFOI | 0.120836 | 0.042357 | 2.852798 | 0.0145 |
| R-squared | 0.951497 | Mean dependent var | 6.779568 | |
| Adjusted R-squared | 0.939371 | S.D. dependent var | 0.701176 | |
| S.E. of regression | 0.172650 | Akaike info criterion | -0.462786 | |
| Sum squared resid | 0.357695 | Schwarz criterion | -0.269639 | |
| Log likelihood | 7.7022 | F-statistic | 78.46923 | |
| Durbin-Watson stat | 1.242766 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: LNIM | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 12:07 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 5.221967 | 0.498001 | 10.48587 | 0.0000 |
| LNFDI | 0.378565 | 0.052146 | 7.259710 | 0.0000 |
| LNFL | -0.091239 | 0.159412 | -0.572344 | 0.5777 |
| LNFOI | 0.090134 | 0.028671 | 3.143728 | 0.0085 |
| R-squared | 0.963592 | Mean dependent var | 6.772717 | |
| Adjusted R-squared | 0.954490 | S.D. dependent var | 0.547809 | |
| S.E. of regression | 0.1168 | Akaike info criterion | -1.243286 | |
| Sum squared resid | 0.163888 | Schwarz criterion | -1.050139 | |
| Log likelihood | 13.94629 | F-statistic | 105.8659 | |
| Durbin-Watson stat | 1.217006 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: LNXM | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 12:08 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 5.14 | 0.551737 | 9.406017 | 0.0000 |
| LNFDI | 0.377103 | 0.057773 | 6.527350 | 0.0000 |
| LNFL | 0.071800 | 0.176613 | 0.406539 | 0.6915 |
| LNFOI | 0.106786 | 0.031765 | 3.361802 | 0.0057 |
| R-squared | 0.9980 | Mean dependent var | 7.473900 | |
| Adjusted R-squared | 0.956225 | S.D. dependent var | 0.618827 | |
| S.E. of regression | 0.129475 | Akaike info criterion | -1.038347 | |
| Sum squared resid | 0.2011 | Schwarz criterion | -0.845200 | |
| Log likelihood | 12.30677 | F-statistic | 110.2193 | |
| Durbin-Watson stat | 1.110469 | Prob(F-statistic) | 0.000000 | |
lnEX=3.608779+0.367907lnFDI+0.279393lnFL+0.120836lnFOI
0.735721 0.077038 0.235508 0.042357
4.905091 4.775662 1.186341 2.852798
R2=0.951497 修正后R2=0.939371 F=78.46923 DW=1.242766
lnIM=5.221967+0.378565lnFDI-0.091239lnFL+0.090134lnFOI
0.498001 0.052146 0.159412 0.028671
10.48587 7.259710 -0.572344 3.143728
R2=0.963592 修正后R2=0.954490 F=105.8659 DW=1.217006
lnXM=5.14+0.377103lnFDI+0.071800lnFL+0.106786lnFOI
0.551737 0.057773 0.176613 0.031765
9.406017 6.527350 0.406539 3.143728
R2=0.9980 修正后R2=0.956225 F=110.2193 DW=1.110469
4.2模型的检验:
4.2.1经济意义的检验
第一,FDI对EX、IM、XM的影响。回归结果显示:FDI每增加1%,EX、IM、XM分别增加0.367907%、0.378565%、0.377103%。
第二,FL对EX、IM、XM的影响。回归结果显示:FL每增加1%,EX、IM、XM分别增加0.279393%、-0.091239%、0.071800%。
第三,FOI对EX、IM、XM的影响。回归结果显示:FOI每增加1%,EX、IM、XM分别增加0.120836%、0.090134%、0.106786%。
FDI、FL、FOI对EX、XM的影响都表现为正的拉动作用,FDI、FOI对IM的影响也表现为正的拉动作用,仅FL对IM的影响表现为负的抑制作用。并且在外资的三种表现因素中,FDI对EX、IM、XM的影响最大,其次是FOI,FL的影响最小。
4.2.2统计检验
三个模型R2、修正后R2值都较大(都在90%以上),说明模型的样本回归线对样本的拟合优度好。以模型一为例,R2=0.951497,修正后R2=0.939371说明总离差平方和的95.1497%(修正后93.9371%)被样本回归线解释,其余部分不能被解释变量解释。
查表得:F0.05(3,12) =3.49,显然三个模型的F统计量值远远大于临界值,全部通过F检验。
查表得:t0.05(12)=2.179,所以,LnFDI(4.775662、7.259710、6.527350)、LnFOI(2.852798、
3.143728、3.143728)的系数通过t检验,而LnFL的系数(1.186341、-0.572344、0.406539)没有通过t检验。
由于LnFL的系数不显著,我们剔除变量LnFL,重新进行回归得到:
| Dependent Variable: LNEX | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 13:35 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 4.459826 | 0.165832 | 26.360 | 0.0000 |
| LNFDI | 0.447220 | 0.038875 | 11.50400 | 0.0000 |
| LNFOI | 0.116523 | 0.042857 | 2.718888 | 0.0176 |
| R-squared | 0.945808 | Mean dependent var | 6.779568 | |
| Adjusted R-squared | 0.937471 | S.D. dependent var | 0.701176 | |
| S.E. of regression | 0.175334 | Akaike info criterion | -0.476886 | |
| Sum squared resid | 0.3997 | Schwarz criterion | -0.332025 | |
| Log likelihood | 6.815085 | F-statistic | 113.4449 | |
| Durbin-Watson stat | 0.950502 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: LNIM | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 13:35 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 4.944048 | 0.107635 | 45.93361 | 0.0000 |
| LNFDI | 0.352665 | 0.025232 | 13.97680 | 0.0000 |
| LNFOI | 0.091542 | 0.027817 | 3.290920 | 0.0058 |
| R-squared | 0.962598 | Mean dependent var | 6.772717 | |
| Adjusted R-squared | 0.956844 | S.D. dependent var | 0.547809 | |
| S.E. of regression | 0.113802 | Akaike info criterion | -1.341354 | |
| Sum squared resid | 0.168361 | Schwarz criterion | -1.1993 | |
| Log likelihood | 13.73083 | F-statistic | 167.2880 | |
| Durbin-Watson stat | 1.222392 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: LNXM | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 13:36 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 5.408352 | 0.118461 | 45.65505 | 0.0000 |
| LNFDI | 0.397486 | 0.027770 | 14.31339 | 0.0000 |
| LNFOI | 0.105678 | 0.030615 | 3.4512 | 0.0043 |
| R-squared | 0.9497 | Mean dependent var | 7.473900 | |
| Adjusted R-squared | 0.959035 | S.D. dependent var | 0.618827 | |
| S.E. of regression | 0.125249 | Akaike info criterion | -1.149668 | |
| Sum squared resid | 0.203935 | Schwarz criterion | -1.004808 | |
| Log likelihood | 12.19734 | F-statistic | 176.5848 | |
| Durbin-Watson stat | 1.041695 | Prob(F-statistic) | 0.000000 | |
lnEX=4.459826+0.447220lnFDI+0.116523lnFOI
0.165832 0.038875 0.042857
26.361 11.50400 2.718888
R2=0.945808 修正后R2=0.937471 F=113.4449 DW=0.950502
lnIM=4.944048+0.352665lnFDI+0.091542lnFOI
0.107635 0.025232 0.027817
45.93361 13.97680 3.290920
R2=0.962598 修正后R2=0.956844 F=167.2880 DW=1.222392
lnXM=5.408352+0.397486lnFDI+0.105678lnFOI
0.118461 0.027770 0.030615
45.65505 14.31339 3.4512
R2=0.9497 修正后R2=0.959035 F=176.5848 DW=1.041695
4.2.3计量经济的检验
第一、多重共线性的检验
在我们的模型中只剩两个解释变量LnFDI、LnFOI,只要检验它们之间的共线性即可。
首先,采用简单相关系数矩阵法,可得到两个解释变量之间的相关系数r =0.497073。这说明两变量之间存在一定的相关性,但相关性不强。为进一步验证两者之间的共线性,我们采用辅助回归进行进一步的检验。
其次,才用辅助回归法将作为LnFDI被解释变量,LnFOI作为解释变量,回归结果如下:
| Dependent Variable: LNFDI | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 13:53 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 3.742010 | 0.547340 | 6.836714 | 0.0000 |
| LNFOI | 0.547985 | 0.255657 | 2.143436 | 0.0501 |
| R-squared | 0.247082 | Mean dependent var | 4.721374 | |
| Adjusted R-squared | 0.193302 | S.D. dependent var | 1.342070 | |
| S.E. of regression | 1.205399 | Akaike info criterion | 3.327967 | |
| Sum squared resid | 20.34181 | Schwarz criterion | 3.424540 | |
| Log likelihood | -24.62373 | F-statistic | 4.594319 | |
| Durbin-Watson stat | 0.271176 | Prob(F-statistic) | 0.050126 | |
说明LnFDI、LnFOI之间不存在共线性,我们仍然保持模型不变。
第二、异方差性的检验
我们采用White(no cross)检验,结果如下:
| White Heteroskedasticity Test: | ||||
| F-statistic | 0.807205 | Probability | 0.545808 | |
| Obs*R-squared | 3.630739 | Probability | 0.458280 | |
| Test Equation: | ||||
| Dependent Variable: RESID^2 | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 14:15 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 0.029059 | 0.219631 | 0.132306 | 0.71 |
| LNFDI | 0.028570 | 0.098738 | 0.2354 | 0.7777 |
| LNFDI^2 | -0.004120 | 0.010876 | -0.378807 | 0.7120 |
| LNFOI | -0.047452 | 0.040369 | -1.175477 | 0.26 |
| LNFOI^2 | 0.009737 | 0.007835 | 1.242767 | 0.2398 |
| R-squared | 0.226921 | Mean dependent var | 0.024978 | |
| Adjusted R-squared | -0.054198 | S.D. dependent var | 0.030297 | |
| S.E. of regression | 0.031107 | Akaike info criterion | -3.852454 | |
| Sum squared resid | 0.0104 | Schwarz criterion | -3.611020 | |
| Log likelihood | 35.81963 | F-statistic | 0.807205 | |
| Durbin-Watson stat | 2.283545 | Prob(F-statistic) | 0.545808 | |
| White Heteroskedasticity Test: | ||||
| F-statistic | 54.28333 | Probability | 0.000000 | |
| Obs*R-squared | 15.22852 | Probability | 0.004250 | |
| Test Equation: | ||||
| Dependent Variable: RESID^2 | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 14:12 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 0.015672 | 0.034121 | 0.459307 | 0.6550 |
| LNFDI | 0.002574 | 0.015339 | 0.167830 | 0.8698 |
| LNFDI^2 | -0.000434 | 0.001690 | -0.257030 | 0.8019 |
| LNFOI | -0.022657 | 0.006271 | -3.6127 | 0.0041 |
| LNFOI^2 | 0.007331 | 0.001217 | 6.023007 | 0.0001 |
| R-squared | 0.951783 | Mean dependent var | 0.010523 | |
| Adjusted R-squared | 0.934249 | S.D. dependent var | 0.018846 | |
| S.E. of regression | 0.004833 | Akaike info criterion | -7.576554 | |
| Sum squared resid | 0.000257 | Schwarz criterion | -7.335120 | |
| Log likelihood | 65.61244 | F-statistic | 54.28333 | |
| Durbin-Watson stat | 2.917857 | Prob(F-statistic) | 0.000000 | |
| White Heteroskedasticity Test: | ||||
| F-statistic | 3.3113 | Probability | 0.033031 | |
| Obs*R-squared | 9.376599 | Probability | 0.052346 | |
| Test Equation: | ||||
| Dependent Variable: RESID^2 | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 14:17 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | -0.016071 | 0.076065 | -0.211280 | 0.8365 |
| LNFDI | 0.024604 | 0.034196 | 0.719504 | 0.4868 |
| LNFDI^2 | -0.003002 | 0.003767 | -0.796872 | 0.4424 |
| LNFOI | -0.026145 | 0.013981 | -1.870029 | 0.0883 |
| LNFOI^2 | 0.006841 | 0.002714 | 2.520958 | 0.0284 |
| R-squared | 0.586037 | Mean dependent var | 0.012746 | |
| Adjusted R-squared | 0.435506 | S.D. dependent var | 0.014339 | |
| S.E. of regression | 0.010773 | Akaike info criterion | -5.973167 | |
| Sum squared resid | 0.001277 | Schwarz criterion | -5.731733 | |
| Log likelihood | 52.78534 | F-statistic | 3.3113 | |
| Durbin-Watson stat | 2.923375 | Prob(F-statistic) | 0.033031 | |
| Dependent Variable: LNEX | |||||
| Method: Least Squares | |||||
| Date: 05/26/05 Time: 14:29 | |||||
| Sample: 1985 2000 | |||||
| Included observations: 16 | |||||
| Weighting series: W | |||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. | |
| C | 4.401916 | 0.160129 | 27.477 | 0.0000 | |
| LNFDI | 0.463473 | 0.041295 | 11.22344 | 0.0000 | |
| LNFOI | 0.105986 | 0.051676 | 2.0509 | 0.0610 | |
| Weighted Statistics | |||||
| R-squared | 0.800680 | Mean dependent var | 6.682012 | ||
| Adjusted R-squared | 0.770015 | S.D. dependent var | 0.386078 | ||
| S.E. of regression | 0.185150 | Akaike info criterion | -0.367937 | ||
| Sum squared resid | 0.4458 | Schwarz criterion | -0.223077 | ||
| Log likelihood | 5.943499 | F-statistic | 26.11087 | ||
| Durbin-Watson stat | 0.829805 | Prob(F-statistic) | 0.000028 | ||
| Unweighted Statistics | |||||
| R-squared | 0.945072 | Mean dependent var | 6.779568 | ||
| Adjusted R-squared | 0.936621 | S.D. dependent var | 0.701176 | ||
| S.E. of regression | 0.176522 | Sum squared resid | 0.405080 | ||
| Durbin-Watson stat | 0.940731 | ||||
| Dependent Variable: LNXM | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 14:25 | ||||
| Sample: 1985 2000 | ||||
| Included observations: 16 | ||||
| Weighting series: W | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 5.376663 | 0.106009 | 50.71913 | 0.0000 |
| LNFDI | 0.406256 | 0.027338 | 14.86041 | 0.0000 |
| LNFOI | 0.100239 | 0.034211 | 2.930054 | 0.0117 |
| Weighted Statistics | ||||
| R-squared | 0.956715 | Mean dependent var | 7.387575 | |
| Adjusted R-squared | 0.950055 | S.D. dependent var | 0.548467 | |
| S.E. of regression | 0.122573 | Akaike info criterion | -1.192860 | |
| Sum squared resid | 0.195314 | Schwarz criterion | -1.047999 | |
| Log likelihood | 12.54288 | F-statistic | 143.6662 | |
| Durbin-Watson stat | 0.930975 | Prob(F-statistic) | 0.000000 | |
| Unweighted Statistics | ||||
| R-squared | 0.9223 | Mean dependent var | 7.473900 | |
| Adjusted R-squared | 0.958719 | S.D. dependent var | 0.618827 | |
| S.E. of regression | 0.125731 | Sum squared resid | 0.205508 | |
| Durbin-Watson stat | 1.026154 | |||
我们继续对修正后的模型进行随机误差项自相关检验。查表得:在显著水平=0.05下,n=16,k’=2时,dl=0.982,du=1.539。所以,模型二的随机误差项落在了不能判定的区域,模型一、三的随机误差项落在了正自相关区域。下面运用Cochrane-Orcutt迭代法进行修正:
| Dependent Variable: LNEX | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 14:59 | ||||
| Sample(adjusted): 1986 2000 | ||||
| Included observations: 15 after adjusting endpoints | ||||
| Convergence achieved after 10 iterations | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 9.529695 | 2.410900 | 3.952754 | 0.0023 |
| LNFDI | 0.006600 | 0.073652 | 0.0615 | 0.9302 |
| LNFOI | 0.041333 | 0.024780 | 1.667983 | 0.1235 |
| AR(1) | 0.953160 | 0.035518 | 26.83566 | 0.0000 |
| R-squared | 0.987900 | Mean dependent var | 6.857452 | |
| Adjusted R-squared | 0.984599 | S.D. dependent var | 0.650213 | |
| S.E. of regression | 0.080691 | Akaike info criterion | -1.973202 | |
| Sum squared resid | 0.071621 | Schwarz criterion | -1.7843 | |
| Log likelihood | 18.79902 | F-statistic | 299.3512 | |
| Durbin-Watson stat | 2.077775 | Prob(F-statistic) | 0.000000 | |
| Inverted AR Roots | .95 | |||
| Dependent Variable: LNIM | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 15:01 | ||||
| Sample(adjusted): 1986 2000 | ||||
| Included observations: 15 after adjusting endpoints | ||||
| Convergence achieved after 7 iterations | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 4.933465 | 0.199421 | 24.730 | 0.0000 |
| LNFDI | 0.358591 | 0.043150 | 8.310291 | 0.0000 |
| LNFOI | 0.085939 | 0.034008 | 2.527037 | 0.0281 |
| AR(1) | 0.355521 | 0.386888 | 0.9126 | 0.3778 |
| R-squared | 0.960344 | Mean dependent var | 6.821152 | |
| Adjusted R-squared | 0.949529 | S.D. dependent var | 0.530390 | |
| S.E. of regression | 0.119156 | Akaike info criterion | -1.193583 | |
| Sum squared resid | 0.156180 | Schwarz criterion | -1.004769 | |
| Log likelihood | 12.95187 | F-statistic | 88.79520 | |
| Durbin-Watson stat | 1.295792 | Prob(F-statistic) | 0.000000 | |
| Inverted AR Roots | .36 | |||
| Dependent Variable: LNXM | ||||
| Method: Least Squares | ||||
| Date: 05/26/05 Time: 14:58 | ||||
| Sample(adjusted): 1986 2000 | ||||
| Included observations: 15 after adjusting endpoints | ||||
| Convergence not achieved after 100 iterations | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 50.83721 | 1003.868 | 0.0501 | 0.9605 |
| LNFDI | 0.111043 | 0.065720 | 1.6650 | 0.1192 |
| LNFOI | 0.035537 | 0.022190 | 1.601483 | 0.1376 |
| AR(1) | 0.997813 | 0.050332 | 19.82474 | 0.0000 |
| R-squared | 0.987854 | Mean dependent var | 7.535803 | |
| Adjusted R-squared | 0.984542 | S.D. dependent var | 0.587033 | |
| S.E. of regression | 0.072986 | Akaike info criterion | -2.173926 | |
| Sum squared resid | 0.058596 | Schwarz criterion | -1.985112 | |
| Log likelihood | 20.30444 | F-statistic | 298.2283 | |
| Durbin-Watson stat | 1.306662 | Prob(F-statistic) | 0.000000 | |
| Inverted AR Roots | 1.00 | |||
5 总结性分析
5.1 FL对进出口的影响作用减弱。在1985-1990年期间,FL大于FDI,是我国利用外资的主要形式,此时FL对进出口的影响作用显著,但随着FDI成为我国利用外资的主要形式,对外借款的作用在逐渐下降。FL每增加1%,EX、IM、XM分别增加0.279393%、-0.091239%、0.071800%,对外借款对对外贸易的影响已经很小。从数据上我们可以推测,FL的主要作用已经转移到在国际上的转移支付或者非贸易部门。
5.2 FDI对对外贸易的影响更加显著。这一点可以从回归结果上得到证实:FDI每增加1%,EX、IM、XM分别增加0.367907%、0.378565%、0.377103%。FDI代替FL成为我国利用外资的主要形式是因为FDI比FI 更能促进我国经济的发展,其原因主要有以下几点:第一、FDI直接解决了我国的一部分就业问题,增加了税收,同时由于许多产品要运回外资国家出售更能带动我国对外贸易的发展。第二、FDI不仅仅是一种资金的转移,更主要的是带来了技术的转移。由于中国起步晚,许多行业处于萌芽阶段,如果单靠自己发展很容易走一些不必要的弯路,FDI的引进能够迅速提高我国的技术水平,弥补我国技术含量低的缺点。第三、FDI的引进在其他领域还产生了许多正的外部效应,如技术服务咨询、技术人才培训、组织管理技能和企业家精神培养等领域。
5.3 FOI在外资中的比例将会上升。FOI每增加1%,EX、IM、XM分别增加0.120836%、0.090134%、0.106786%,国际租赁、补偿贸易等多种利用外资的形式对对外贸易的影响比较显著,根据发达国家的经验,我们预言FOI在外资中的比例将会上升。
参考文献:
[1]宋汉,柴瑜.多于承诺的实施—加入WTO对中国引进外资的影响「J].国际贸易,2000(3) :18一20.
[2]姜征.外资企业对我国出口产品结构变化的影响分析「J].国际贸易问题,1999(11) :25一27.
[3]李健.力争增长—1999年我国外贸形势分析「J].中国贸易,1999(8) :1一13.
[4]刘跃生.国际直接投资与中国利用外资I ml.北京:中国发展出版社,1999.
[5]季崇威.中国利用外资的历程[M].北京:中国经济出版社,1999.
[6磷长洪.利用外资与产业竞争力[M].北京:社会科学文献出版社,1999.
