
(五)计算题
例1、某集团公司所属各拖拉机厂某月生产情况如下表所示:
| 厂别 | 类型 | 每台马力数 | 产量(台) |
| 第1厂 | 履带式 | 36 | 75 |
| 履带式 | 18 | 105 | |
| 轮式 | 28 | 400 | |
| 第2厂 | 履带式 | 75 | 85 |
| 轮式 | 15 | 94 | |
| 轮式 | 12 | 150 | |
| 第3厂 | 履带式 | 45 | 40 |
| 履带式 | 75 | 25 | |
| 轮式 | 24 | 50 |
解:【分析】通常总量指标中首选核算实物量。
这里可以核算自然实物量、双重单位实物量和标志单位实物量。
从下面两表看出核算的过程及结果:
(1)按自然单位和双重单位核算:
| 产品类型 | 产量(台) | 产量(台/马力) |
| 履带式 | 330 | 330/140 |
| 轮式 | 694 | 694/15610 |
| 合计 | 1024 | 1024/30250 |
| 产品类型与功率 | 产量(台) | 换算系数 | 标准台数 |
| (1) | (2) | (3)=(1)÷15 | (4)=(2)×(3) |
| 履带式 | |||
| 18马力 | 105 | 1.2 | 126 |
| 36马力 | 75 | 2.4 | 180 |
| 45马力 | 40 | 3.0 | 120 |
| 75马力 | 110 | 5.0 | 550 |
| 小计 | 330 | — | 976 |
| 轮式 | |||
| 12马力 | 150 | 0.800 | 120 |
| 15马力 | 94 | 1.000 | 94 |
| 24马力 | 50 | 1.600 | 80 |
| 28马力 | 400 | 1.867 | 747 |
| 小计 | 694 | — | 1041 |
| 合计 | 1024 | — | 2017 |
单位:人
| 户籍人口数 | ||
| 2001年 | 2002年 | |
| 人口总数 男 女 | 1343599 682524 661075 | 1371588 695762 675826 |
解:计算结果列表如下:
| 2001年 | 2002年 | |
| 人口总数 男 女 (1)男性人口占总人口比重(%) (2)女性人口占总人口比重(%) (3)性别比例(%)男:女 (4)人口密度(人/平方公里) (5)人口增长速度(%) | 1343599 682524 661075 50.8 49.2 103 858 — | 1371588 695762 675826 50.7 49.3 102 876 2.1 |
例3、某服装公司产量如下:
单位:万件
| 2002年 | 2003年 | |||
| 计划 | 实际 | 重点企业产量 | ||
| 成人的 儿童的 | 6.4 5.1 | 8.8 5.7 | 9.4 6.1 | 4.3 2.3 |
| 合计 | 11.5 | 14.5 | 15.5 | 6.6 |
解:下面设计一张统计表,把所计算的相对指标反映在表中:
| 2002年 | 2003年 | 2003年比2002年增长(%) | ||||||||
| 产量 | 比重 (%) | 计划 | 实际 | 产量计划完成(%) | 重点企业 | |||||
| 产量 | 比重(%) | 产量 | 比重(%) | 产量 | 比重(%) | |||||
| (甲) | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
| 成人的 儿童的 | 6.4 5.1 | 56 44 | 8.8 5.7 | 61 39 | 9.4 6.1 | 61 39 | 106.8 107.0 | 4.3 2.3 | 65 35 | 46.9 19.6 |
| 合计 | 11.5 | 100 | 14.5 | 100 | 15.5 | 100 | 106.9 | 6.6 | 100 | 34.8 |
此外,还可把“成人的”产量与“儿童的”产量对比,计算比例相对数;
把重点企业产量与全公司产量对比,计算结构相对数。
例4、某地区2003年生产总值计划为上年的108%,2002-2003年动态相对数为114%,试确定2003年生产总值计划完成程度。
解:根据计划完成程度(%)=
例5、某农场三种不同地段的粮食产量资料如下:
| 地段 | 播种面积(亩) | 收获量(公斤) |
| 甲 乙 丙 | 60 50 40 | 48000 35000 24000 |
| 合计 | 150 | 107000 |
解:【分析】本题利用算术平均数的基本形式进行计算,直接用组标志总量除以组单位总量得出各地段平均单位面积产量。再用标志总量除以单位总量得到三个地段的总平均收获率。计算结果如下:
| 地段 | 播种面积(亩) | 收获量(公斤) | 收获率(公斤/亩) |
| 甲 乙 丙 | 60 50 40 | 48000 35000 24000 | 800 700 600 |
| 合计 | 150 | 107000 | 713 |
例6、某厂有102名工人,各组工人工资和工人数资料如下:
| 技术级别 | 月工资(元) | 工人数(人) |
| 1 2 3 4 5 | 546 552 560 570 585 | 57 15 18 40 2 |
| 合计 | — | 102 |
解:【分析】技术级别和月工资都是工人的标志,可通过工人数加权来计算平均技术级别和平均月工资。
工人的平均月工资计算列表如下:
| 技术级别 | 月工资x(元) | 工人数f(人) | 工资总额xf(元) |
| 1 2 3 4 5 | 546 552 560 570 585 | 57 15 18 40 2 | 31122 8280 10080 5700 1170 |
| 合计 | — | 102 | 56352 |
例7、某管理局所属15个企业,某年某产品按平均成本的高低分组资料如下表:
| 按平均成本分组(元/件) | 企业数(个) | 各组产量在总产量中所占比重(%) |
| 10-12 12-14 14-18 | 2 7 6 | 22 40 38 |
| 合计 | 15 | 100 |
解:【分析】本题计算要求利用频率计算平均数的公式,资料是组距分配数列,须先计算组中值。
另外,本题还涉及权数的选择,企业数虽是次数,但它和分组标志值相乘无任何实际意义,因此,不能作权数。只有采用产量比重作权数,才符合题目要求。
列表计算如下:
| 按平均单位成本分组(元) | 组中值x | 各组产量在总产量中所占比重(%) | |
| 10-12 12-14 14-18 | 11 13 16 | 22 40 38 | 2.42 5.20 6.08 |
| 合计 | — | 100 | 13.70 |
例8、某企业工人按劳动生产率高低分组的资料如下:
| 按劳动生产率分组(件/人) | 生产工人数 |
| 50-60 60-70 70-80 80-90 90以上 | 150 100 70 30 16 |
| 合计 | 366 |
解:【分析】本题是等距分配数列,要计算平均数首先要计算组中值。最后一组为开口组,其组中值=下限+相邻组距=95
列表计算如下:
| 按劳动生产率分组(件/人) | 组中值x | 生产工人数f | 产量xf(件) |
| 50-60 60-70 70-80 80-90 90以上 | 55 65 75 85 95 | 150 100 70 30 16 | 8250 6500 5250 2550 1520 |
| 合计 | — | 366 | 24070 |
例9、某公司所属20个企业资金利润及有关资料如下表:
| 资金利润率(%) | 组中值(%) | 企业数 | 企业资金(万元) |
| -10-0 0-10 10-20 20-30 | -5 5 15 25 | 10 5 3 2 | 80 100 500 800 |
| 合计 | — | 20 | 1480 |
解:【分析】本题不宜以企业数为权数,应该以企业资金为权数,求得各组的实际利润,然后求平均利润率。
平均利润率:
这里276万元是全公司的利润总额,分母1480万元是全公司的资金,所得的平均利润率18.65%是符合实际的。
例10、2003年某月份甲乙两农贸市场某农产品价格及成交量和成交额的资料如下:
| 品种 | 价格(元/千克) | 甲市场成交额(万元) | 乙市场成交量(万千克) |
| A B C | 1.2 1.4 1.5 | 1.2 2.8 1.5 | 2 1 1 |
| 合计 | — | 5.5 | 4 |
解:【分析】给定的数据是被平均标志(价格)的分子(成交额),则用加权调和平均数计算;给定的是“分母”(成交量),则按加权算术平均数计算。
计算列表如下:
| 价格x(元/千克) | 甲市场 | 乙市场 | ||
| 成交额M (万元) | 成交量M/x (万千克) | 成交量f (万千克) | 成交额xf (万元) | |
| 1.2 1.4 1.5 | 1.2 2.8 1.5 | 1 2 1 | 2 1 1 | 2.4 1.4 1.5 |
| 合计 | 5.5 | 4 | 4 | 5.3 |
(元/千克)
(元/千克)
例11、某市场某种蔬菜早市、午市和晚市每千克价格分别为1.25元、1.20元和1.15元,试在下面的情况下求平均价格:(1)早市、午市和晚市销售量基本相同;(2)早市、午市和晚市销售额基本相同。
解:【分析】销售量基本相同,可以看作次数(f)相等,故平均价格可用简单算术平均数计算。已知销售额即标志总量(m),要用调和平均数计算平均价格。这里早、午和晚市销售额基本相同,可用简单调和平均数计算。
(1)(元/千克)
(2)(元/千克)
例12、某企业某月工人日产量资料如下表,试计算众数和中位数。
| 日产量分组(件) | 工人数 |
| 60以下 60-70 70-80 80-90 90-100 100以上 | 40 100 180 220 90 50 |
| 合计 | 680 |
(件)
(2)中位数: (件)
例13、设甲乙两公司进行招员考试,甲公司用百分制记分,乙公司用五分制记分,有关资料如下表所示:
| 甲公司 | 百分制组别 | 参考人数(人) | 乙公司 | 五分制组别 | 参考人数(人) |
| 60以下 60-70 70-80 80-90 90-100 100以上 | 1 15 20 12 2 | 1 2 3 4 5 | 1 3 13 17 16 | ||
| 合计 | 50 | 合计 | 50 |
解:【分析】要说明哪一个公司招员考试的成绩比较整齐,必须计算标准差系数。
计算过程如下:
| 甲公司 | 乙公司 | |||||||
| 55 65 75 85 95 | 1 15 20 12 2 | 55 975 1500 1020 190 | 3025 63375 112500 86700 18050 | 1 2 3 4 5 | 1 3 13 17 16 | 1 6 39 68 80 | 1 12 117 272 400 | |
| 50 | 3740 | 283650 | 50 | 194 | 802 | |||
(分)
(分)
从变异系数表明甲公司招员考试成绩比较整齐。
例14、设两钢铁企业某月上旬的钢材供货资料如下:
单位:万吨
| 供货日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 | 8日 | 9日 | 10日 |
| 甲企业 乙企业 | 26 15 | 26 15 | 28 17 | 28 18 | 29 19 | 30 19 | 30 18 | 30 16 | 23 16 | 26 17 |
解:【分析】比较两个企业钢材供应均衡性要通过标志变异指标来说明。先计算平均数和标准差,标准差按简捷公式计算。
| 甲企业 | 乙企业 | |||
| 1 2 3 4 5 6 7 8 9 10 | 26 26 28 28 29 30 30 30 23 26 | 676 676 784 784 841 900 900 900 529 676 | 15 15 17 18 19 19 18 16 16 17 | 225 225 2 324 361 361 324 256 256 2 |
| 276 | 7666 | 170 | 2910 | |
乙企业平均日供货量(万吨)
甲企业日供货量标准差
(万吨)
乙企业日供货量标准差
(万吨)
为了消除甲、乙两企业日供货量的影响,以便真实反映日供货量变动程度的大小,还需要进一步计算标准差系数。
甲企业,乙企业
计算表明甲企业日供货量标准差系数比乙企业小,说明甲企业上旬供货比乙企业均衡。
例15、某农场的两种不同良种在五个村庄条件基本相同的地块上试种,结果如下:
| 甲品种 | 乙品种 | ||
| 收获率(千克/亩) | 播种面积(亩) | 收获率(千克/亩) | 播种面积(亩) |
| 950 900 1100 1050 1000 | 11 9 10 8 12 | 700 900 1120 1000 1208 | 9 13 15 13 10 |
| — | 50 | — | 60 |
列表计算如下:
| 甲品种 | 乙品种 | 产量 | ||||
| 收获率x | 播种面积f | 收获率x | 播种面积f | 甲品种 | 乙品种 | |
| 甲 乙 丙 丁 戊 | 950 900 1100 1050 1000 | 11 9 10 8 12 | 700 900 1120 1000 1208 | 9 13 15 13 10 | 10450 8100 11000 8400 12000 | 6300 11700 16800 13000 12080 |
| 合计 | — | 50 | — | 60 | 49950 | 59880 |
甲品种
乙品种
(2)亩产标准差
甲品种
乙品种
(3)标志变异系数
甲品种,乙品种
从计算结果可以看出,甲品种平均收获量略高于乙品种,标准差系数甲品种又比乙品种小,说明甲品种收获率具有较大的稳定性,有推广价值。
例16、某城市居民120户住房面积调查的资料如下:
| 住房面积(平方米/户) | 户数 | 住房面积(平方米/户) | 户数 |
| 50以下 50-60 60-70 70-80 | 10 15 20 40 | 80-90 90-100 100以上 合计 | 10 15 10 120 |
(2)住房面积“50-60”和“50-60以外的各种住房面积”。
解:【分析】这是是非标志的问题,对第一种情况,以住房面积 “50以下”为是,“50以上”为非;对第二种情况,则以住房面积“50-60”为是,“50-60以外的各种住房面积”为非。解答计算过程如下:
第一种情况:
| 户均住房面积(平方米) | |||||
| 50以下 50以上 | 1 0 | 10 110 | 10 0 | 1-0.083 0-0.083 | 8.41 0.76 |
| 合计 | — | 120 | 10 | 1 | 9.17 |
| 户均住房面积(平方米) | ||||
| 50-60 50-60以外的各住房面积 | 1 0 | 15 105 | 15 0 | 15 0 |
| 合计 | — | 120 | 15 | 15 |
=0.109375=10.9%
例17、某城市两城区商品房销售资料如下(见下页表):
试计算均方差系数,来确定哪区房价差异较大。
解:【分析】各类商品房的均价是标志值,计算总均价的权数是“销售面积”,而不是“销售套数”。因为每一套的面积不相同,“销售套数”是不恰当权数。
| 甲区 | 乙区 | |||||
| 销 售 套 数 | 销 售 面 积 | 均价(元/平方米) | 销 售 套 数 | 销 售 面 积 | 均价(元/平方米) | |
| 别墅 住宅 商场 写字楼 车库 厂房 | 10 8 188 26 153 0 | 3523 112317 33499 4078 10139 0 | 9545 4523 8308 4058 2247 0 | 5 353 95 9 14 1 | 1870 37995 7376 2281 2155 212 | 7874 3900 6700 5033 2050 165 |
| 合计 | 1275 | 163556 | 537 | 518 | ||
=4398.95元; =1300.08元
两区均价的均方差系数:
可见,乙区各类商品房房价的差异比甲区小。
