
sinx~x
tanx~x
arcsinx~x
arctanx~x
1-cosx~(1/2)*(x^2)~secx-1
(a^x)-1~x*lna ((a^x-1)/x~lna)
(e^x)-1~x
ln(1+x)~x
(1+Bx)^a-1~aBx
[(1+x)^1/n]-1~(1/n)*x
loga(1+x)~x/lna
(1+x)^a-1~ax(a≠0)
值得注意的是,等价无穷小一般只能在乘除中替换,
在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)
等价无穷小的定义:设当时,和均为无穷小量。若,则称和是等价无穷小量,记作。
例如:由于,故有。
等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限时,使用等价无穷小的条件
1.被代换的量,在取极限的时候极限值为0;
2.被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
定理
无穷小等价替换定理
设函数,,,在内有定义,且有
(1)若,则;
(2)若,则。
证明:
(1)。
(2)。
例如:利用等价无穷小量代换求极限
解:由于,
而,,,
故有。
注意:等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不一定能随意 单独代换或分别代换)。如在上例中:
若因有,,而推出,则得到的是 错误的结果。
注:可直接等价替换的类型
(以上几个性质可以用来化简一些未定式以方便运用洛必达法则)
需要满足一定条件才能替换的类型
若,则
(该条性质非常重要,这是判断在加减法中能否分别等价替换的重要依据)
变上限积分函数(积分变限函数)也可以用等价无穷小进行替换。
公式
编辑
常见等价无穷小当时,
注:以上各式可通过泰勒展开式推导出来。
极限
数学分析的基础概念。它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。历史上是柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。他说,“当为同一个变量所有的一系列值无限趋近于某个定值,并且最终与它的差要多小就有多小”(《分析教程》,1821),这个定值就称为这个变量的极限.其后,外尔斯特拉斯(Weierstrass,K.(T.W.))按照这个思想给出严格定量的极限定义,这就是现在数学分析中使用的ε-δ定义或ε-Ν定义等。从此,各种极限问题才有了切实可行的判别准则。在分析学的其他学科中,极限的概念也有同样的重要性,在泛函分析和点集拓扑等学科中还有一些推广。
