最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

等价无穷小公式大全

来源:动视网 责编:小OO 时间:2025-09-24 14:55:20
文档

等价无穷小公式大全

当x→0时,sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0) 值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)等价无穷小的
推荐度:
导读当x→0时,sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0) 值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)等价无穷小的
当x→0时,

 sinx~x 

 tanx~x 

 arcsinx~x 

arctanx~x 

1-cosx~(1/2)*(x^2)~secx-1 

(a^x)-1~x*lna ((a^x-1)/x~lna) 

(e^x)-1~x 

 ln(1+x)~x 

(1+Bx)^a-1~aBx 

[(1+x)^1/n]-1~(1/n)*x 

loga(1+x)~x/lna 

(1+x)^a-1~ax(a≠0) 

值得注意的是,等价无穷小一般只能在乘除中替换,

在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)

等价无穷小的定义:设当时,和均为无穷小量。若,则称和是等价无穷小量,记作。

例如:由于,故有。

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时,使用等价无穷小的条件

1.被代换的量,在取极限的时候极限值为0;

2.被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

定理

无穷小等价替换定理

设函数,,,在内有定义,且有

(1)若,则;

(2)若,则。

证明:

(1)。

(2)。

例如:利用等价无穷小量代换求极限

解:由于,

而,,,

故有。

注意:等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不一定能随意     单独代换或分别代换)。如在上例中:

若因有,,而推出,则得到的是     错误的结果。

注:可直接等价替换的类型

(以上几个性质可以用来化简一些未定式以方便运用洛必达法则)

需要满足一定条件才能替换的类型

若,则

(该条性质非常重要,这是判断在加减法中能否分别等价替换的重要依据)

变上限积分函数(积分变限函数)也可以用等价无穷小进行替换。

公式

编辑

常见等价无穷小当时,

注:以上各式可通过泰勒展开式推导出来。

极限

数学分析的基础概念。它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。历史上是柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。他说,“当为同一个变量所有的一系列值无限趋近于某个定值,并且最终与它的差要多小就有多小”(《分析教程》,1821),这个定值就称为这个变量的极限.其后,外尔斯特拉斯(Weierstrass,K.(T.W.))按照这个思想给出严格定量的极限定义,这就是现在数学分析中使用的ε-δ定义或ε-Ν定义等。从此,各种极限问题才有了切实可行的判别准则。在分析学的其他学科中,极限的概念也有同样的重要性,在泛函分析和点集拓扑等学科中还有一些推广。

文档

等价无穷小公式大全

当x→0时,sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0) 值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)等价无穷小的
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top