最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

用叉乘求法向量

来源:动视网 责编:小OO 时间:2025-09-24 14:54:24
文档

用叉乘求法向量

平面法向量的求法及其应用一、平面的法向量1、定义:如果,那么向量叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面的法向量[或,或],在平面内任找两个不共线的向量。由,得且,由此得到关于的方程组,解此方程组即可得到。方法二:任何一个的一次次方程的图形是平面;反之,任何一个平面的方程是的一次方程。,称为平面的一般方程。其法向量;若平面与3个坐标轴的交点为,如图所示,则平面方程为:,称此方程为平面的截距式方程,把它
推荐度:
导读平面法向量的求法及其应用一、平面的法向量1、定义:如果,那么向量叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面的法向量[或,或],在平面内任找两个不共线的向量。由,得且,由此得到关于的方程组,解此方程组即可得到。方法二:任何一个的一次次方程的图形是平面;反之,任何一个平面的方程是的一次方程。,称为平面的一般方程。其法向量;若平面与3个坐标轴的交点为,如图所示,则平面方程为:,称此方程为平面的截距式方程,把它
平面法向量的求法及其应用

一、平面的法向量 

1、定义:如果,那么向量叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。

2、平面法向量的求法

方法一(内积法):在给定的空间直角坐标系中,设平面的法向量[或,或],在平面内任找两个不共线的向量。由,得且,由此得到关于的方程组,解此方程组即可得到。

方法二:任何一个的一次次方程的图形是平面;反之,任何一个平面的方程是的一次方程。,称为平面的一般方程。其法向量;若平面与3个坐标轴的交点为,如图所示,则平面方程为:,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。

方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积为一长度等于,(θ为,两者交角,且),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为的方向,。   

(注:1、二阶行列式:  ;2、适合右手定则。)

例1、已知,,

试求(1):(2): 

Key: (1);

例2、如图1-1,在棱长为2的正方体中,

求平面AEF的一个法向量。

二、平面法向量的应用

1、求空间角

(1)、求线面角:如图2-1,设是平面的法向量,

AB是平面的一条斜线,,则AB与平面

所成的角为:

图2-1-1: 

图2-1-2: 

 (2)、求面面角:设向量,分别是平面、的法向量,则二面角的平面角为:

(图2-2);

(图2-3)

两个平面的法向量方向选取合适,可使法向量夹角就等于二面角的平面角。约定,在图2-2中,的方向对平面而言向外,的方向对平面而言向内;在图2-3中,的方向对平面而言向内,的方向对平面而言向内。我们只要用两个向量的向量积(简称“外积”,满足“右手定则”)使得两个半平面的法向量一个向内一个向外,则这两个半平面的法向量的夹角即为二面角的平面角。

2、求空间距离

(1)、异面直线之间距离:

方法指导:如图2-4,①作直线a、b的方向向量、,

求a、b的法向量,即此异面直线a、b的公垂线的方向向量;

②在直线a、b上各取一点A、B,作向量;

③求向量在上的射影d,则异面直线a、b间的距离为

,其中

(2)、点到平面的距离:

方法指导:如图2-5,若点B为平面α外一点,点A

为平面α内任一点,平面的法向量为,则点P到

平面α的距离公式为

(3)、直线与平面间的距离:

方法指导:如图2-6,直线与平面之间的距离:

,其中。是平面的法向量

(4)、平面与平面间的距离:

方法指导:如图2-7,两平行平面之间的距离:

,其中。是平面、的法向量。

3、证明

(1)、证明线面垂直:在图2-8中,向是平面的法向量,是直线a的方向向量,证明平面的法向量与直线所在向量共线()。

(2)、证明线面平行:在图2-9中,向是平面的法向量,是直线a的方向向量,证明平面的法向量与直线所在向量垂直()。

(3)、证明面面垂直:在图2-10中,是平面的法向量,是平面的法向量,证明两平面的法向量垂直()

(4)、证明面面平行:在图2-11中,向是平面的法向量,是平面的法向量,证明两平面的法向量共线()。

三、高考真题新解

1、(2005全国I,18)(本大题满分12分)

已知如图3-1,四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点

(Ⅰ)证明:面PAD⊥面PCD;

(Ⅱ)求AC与PB所成的角;

(Ⅲ)求面AMC与面BMC所成二面角的大小

解:以A点为原点,以分别以AD,AB,AP为x轴,y轴,z轴,建立空间直角坐标系A-xyz如图所示.

,,设平面PAD的法向量为

,,设平面PCD的法向量为

,,即平面PAD平面PCD。

,, 

,,设平在AMC的法向量为.

又,设平面PCD的法向量为.

.

面AMC与面BMC所成二面角的大小为.

2、(2006年云南省第一次统测19题) (本题满分12分)

如图3-2,在长方体ABCD-A1B1C1D1中,

已知AB=AA1=a,BC=a,M是AD的中点。

(Ⅰ)求证:AD∥平面A1BC;

(Ⅱ)求证:平面A1MC⊥平面A1BD1;

(Ⅲ)求点A到平面A1MC的距离。

解:以D点为原点,分别以DA,DC,DD1为x轴,y轴,z轴,建立空间直角坐标系D-xyz如图所示.

, ,设平面A1BC的法向量为

又, , ,即AD//平面A1BC.

, ,设平面A1MC的法向量为:,

又, ,设平面A1BD1的法向量为:,

, ,即平面A1MC平面A1BD1.

设点A到平面A1MC的距离为d,

是平面A1MC的法向量,

又,A点到平面A1MC的距离为:.

四、用空间向量解决立体几何的“三步曲”

(1)、建立空间直角坐标系(利用现有三条两两垂直的直线,注意已有的正、直条件,相关几何知识的综合运用,建立右手系),用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)

(2)、通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)

(3)、把向量的运算结果“翻译”成相应的几何意义。(回到图形问题)春到四月,如火如荼,若诗似画,美到了极致,美到了令人心醉。“你是一树一树的花开,是燕,在梁间呢喃,你是爱,是暖,是希望,你是人间的四月天”。喜欢才女林徽因歌颂四月之美的这首《你是人间的四月天》,她将四月的万种风情描摹得淋漓尽致,读来如沐春风如饮甘露。

四月之美,美在清明。时光刚刚跨入四月的门槛,清明就如期而至,“清明时节雨纷纷,路上行人欲断魂。”清明是一种传承了数千年的古老文化,是一场活着的人祭奠逝去的祖先的亲情style。“风吹旷野纸钱飞,古墓垒垒春草绿”,每到清明,人们不会忘记在天堂的祖先,都会放下手中繁忙的工作,即便远离故土,也会怀揣湿漉漉的心事回到乡下,挑拣一个最宜祭祀的日子,赶往祖先墓地,虔诚地献上一捧鲜花,点上几支香火,烧上一些纸钱,将祖先的坟墓装扮一新,以表达对已逝亲人的思念和祝福。清明时节,最容易勾起与已逝亲人一起度过的那些美好岁月的回忆,让人深刻体悟到亲情的可贵。于是,亲情跨越了时空,泪水模糊了双眼。在莹莹泪光中,就让活着的人好好活着,让已经逝去的人在天堂感到欣慰。四月之美,美在祭祖的哀思,美在人间传递着的温情。

四月之美,美在谷雨。“清明早、立夏迟,谷雨种棉正当时”,清明过后,雨水增多,有利于谷类作物的生长。因此,谷雨是春播春种的关键时期。在乡间,一到谷雨时节,村民们便忙了起来,房前屋后,田间地头,处处是村民们忙碌的身影,处处嘹亮起劳动的号角,处处律动着劳作的喜悦。他们将生活的希望播撒,将幸福的种子栽种,早出晚归,乐而不疲,笑容满面。他们洒下的是一粒粒咸涩的汗水,成就的将是整个秋天旷野上丰硕的果实。累了,他们举头仰望绽开在湛蓝天空上多情的太阳;倦了,他们想一想等待在前方的耀眼金秋。春风,贴着他们的身影吹过,将灼热的期盼和梦想带向遥远、遥远……他们劳动的姿势,仿佛在大地上书写一首生活的真爱长歌;他们奔忙的步伐,舞动出四月美妙和谐的韵律;他们洋溢在嘴角的笑意,仿佛闪烁在阳光下的一朵朵桃花。四月之美,美在他们的不辍劳作,美在他们孜孜不倦地创造甜蜜生活的那颗淳朴心灵。

四月之美,美在花繁草盛。“黄四娘家花满蹊,千朵万朵压枝低。”四月,千芳竞放,姹紫嫣红,你不让我我不让你,争相斗妍,好不热闹。桃花,在多情春风的表白下双颊绯红,欲语还羞;梨花,一束束一簇簇,洋洋洒洒,热烈、雪白而纯情;樱花,怀揣粉红的梦想,轻轻摇落一地的深情。地上的小草也不敢示弱,纷纷抬起挂着剔透露珠的绿色脑袋,在阳光的照耀下折射出诱人的光泽。四月的小草,已不再是初春时那样遥看近却无了,山坡、谷底、河畔、溪边,到处一派翠绿,尽情释放着勃勃的生机,大地好像悄悄铺上了一层绿色的地毯。四月,无论伫立在哪个位置,抬眼,花枝摇曳春风中,群芳嫣然若笑脸;闭眼,馥郁的芳香扑面而来,沁人心脾,直钻心底;低头,满目尽是绿色小草在招摇。四月之美,美在百花盛开,美在绿草如茵。

最美人间四月天。四月之美,美在娇燕呢喃着在天空画出的一道道优美弧线;四月之美,美在败落的花朵已经悄然被青涩的果取代;四月之美,美在孩子们放风筝时撒落在草地上的一串串清脆的笑声……就让我们在这人间最美的四月天,抛开烦恼和忧愁,紧跟春天的步伐,用心感悟尘世的万般美景,用勤劳的双手去创造更加美好的未来。

文档

用叉乘求法向量

平面法向量的求法及其应用一、平面的法向量1、定义:如果,那么向量叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面的法向量[或,或],在平面内任找两个不共线的向量。由,得且,由此得到关于的方程组,解此方程组即可得到。方法二:任何一个的一次次方程的图形是平面;反之,任何一个平面的方程是的一次方程。,称为平面的一般方程。其法向量;若平面与3个坐标轴的交点为,如图所示,则平面方程为:,称此方程为平面的截距式方程,把它
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top