计量经济学上机模型分析方法总结
一、随机误差项的异方差问题的检验与修正
模型一:
Dependent Variable: LOG(Y) | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:03 | | |
Sample: 1 31 | | | |
Included observations: 31 | | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 1.602528 | 0.860978 | 1.861288 | 0.0732 |
LOG(X1) | 0.325416 | 0.103769 | 3.135955 | 0.0040 |
LOG(X2) | 0.507078 | 0.048599 | 10.43385 | 0.0000 |
| | | | |
| | | | |
R-squared | 0.796506 | Mean dependent var | 7.448704 |
Adjusted R-squared | 0.781971 | S.D. dependent var | 0.38 |
S.E. of regression | 0.170267 | Akaike info criterion | -0.611128 |
Sum squared resid | 0.811747 | Schwarz criterion | -0.472355 |
Log likelihood | 12.47249 | F-statistic | 54.79806 |
Durbin-Watson stat | 1.9720 | Prob(F-statistic) | 0.000000 |
| | | | |
| | | | |
(一)异方差的检验
1、GQ检验法
模型二:
Dependent Variable: LOG(Y) | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:19 | | |
Sample: 1 12 | | | |
Included observations: 12 | | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 3.744626 | 1.191113 | 3.143804 | 0.0119 |
LOG(X1) | 0.344369 | 0.082999 | 4.149077 | 0.0025 |
LOG(X2) | 0.1604 | 0.118844 | 1.421228 | 0.10 |
| | | | |
| | | | |
R-squared | 0.669065 | Mean dependent var | 7.239161 |
Adjusted R-squared | 0.595524 | S.D. dependent var | 0.133581 |
S.E. of regression | 0.084955 | Akaike info criterion | -1.8810 |
Sum squared resid | 0.0957 | Schwarz criterion | -1.759837 |
Log likelihood | 14.28638 | F-statistic | 9.097834 |
Durbin-Watson stat | 1.810822 | Prob(F-statistic) | 0.006900 |
| | | | |
| | | | |
模型三:
Dependent Variable: LOG(Y) | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:20 | | |
Sample: 20 31 | | |
Included observations: 12 | | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | -0.353381 | 1.607461 | -0.219838 | 0.8309 |
LOG(X1) | 0.2108 | 0.158220 | 1.332942 | 0.2153 |
LOG(X2) | 0.856522 | 0.108601 | 7.886856 | 0.0000 |
| | | | |
| | | | |
R-squared | 0.878402 | Mean dependent var | 7.769851 |
Adjusted R-squared | 0.851381 | S.D. dependent var | 0.390363 |
S.E. of regression | 0.150490 | Akaike info criterion | -0.737527 |
Sum squared resid | 0.203824 | Schwarz criterion | -0.616301 |
Log likelihood | 7.425163 | F-statistic | 32.50732 |
Durbin-Watson stat | 2.123203 | Prob(F-statistic) | 0.000076 |
| | | | |
| | | | |
进行模型二和模型三两次回归,目的仅是得到出去中间7个样本点以后前后各12个样本点的残差平方和RSS1和RSS2,然后用较大的RSS除以较小的RSS即可求出F统计量值进行显著性检验。
2、怀特检验法(White)
模型一的怀特残差检验结果:
White Heteroskedasticity Test: | |
| | | | |
| | | | |
F-statistic | 4.920995 | Probability | 0.004339 |
Obs*R-squared | 13.35705 | Probability | 0.009657 |
| | | | |
| | | | |
Test Equation: | | |
Dependent Variable: RESID^2 | | |
Method: Least Squares | | |
Date: 05/29/13 Time: 09:04 | | |
Sample: 1 31 | | | |
Included observations: 31 | | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 3.982137 | 2.882851 | 1.381319 | 0.17 |
LOG(X1) | -0.5792 | 0.916069 | -0.6323 | 0.5327 |
(LOG(X1))^2 | 0.041839 | 0.066866 | 0.625710 | 0.5370 |
LOG(X2) | -0.563656 | 0.203228 | -2.773514 | 0.0101 |
(LOG(X2))^2 | 0.040280 | 0.013879 | 2.902173 | 0.0075 |
| | | | |
| | | | |
R-squared | 0.430873 | Mean dependent var | 0.026185 |
Adjusted R-squared | 0.343315 | S.D. dependent var | 0.038823 |
S.E. of regression | 0.031460 | Akaike info criterion | -3.933482 |
Sum squared resid | 0.025734 | Schwarz criterion | -3.702194 |
Log likelihood | 65.968 | F-statistic | 4.920995 |
Durbin-Watson stat | 1.526222 | Prob(F-statistic) | 0.004339 |
| | | | |
| | | | |
一方面,根据上面的Obs*R2=31*0.430873=13.35705>χ2(4),说明存在显著的异方差问题;另一方面,根据下面的辅助回归模型可以看出LOG(X2) 与(LOG(X2))^2均通过了t检验,说明异方差的形式可以用LOG(X2) 与(LOG(X2))^2的线性组合表示,权变量可以简单确定为1/LOG(X2)。
(二)加权最小二乘法(WLS)修正
1、方法原理:具体参见教材。
2、回归结果分析
模型四:
Dependent Variable: LOG(Y) | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:06 | | |
Sample: 1 31 | | | |
Included observations: 31 | | |
Weighting series: 1/LOG(X2) | | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 1.478085 | 0.817610 | 1.807811 | 0.0814 |
LOG(X1) | 0.377915 | 0.096925 | 3.9044 | 0.0006 |
LOG(X2) | 0.473471 | 0.048398 | 9.7828 | 0.0000 |
| | | | |
| | | | |
| Weighted Statistics | | |
| | | | |
| | | | |
R-squared | 0.8726 | Mean dependent var | 7.4232 |
Adjusted R-squared | 0.863550 | S.D. dependent var | 0.436598 |
S.E. of regression | 0.161276 | Akaike info criterion | -0.719639 |
Sum squared resid | 0.728274 | Schwarz criterion | -0.580866 |
Log likelihood | 14.15440 | F-statistic | 49.27256 |
Durbin-Watson stat | 2.036239 | Prob(F-statistic) | 0.000000 |
| | | | |
| | | | |
| Unweighted Statistics | | |
| | | | |
| | | | |
R-squared | 0.7709 | Mean dependent var | 7.448704 |
Adjusted R-squared | 0.774688 | S.D. dependent var | 0.38 |
S.E. of regression | 0.173088 | Sum squared resid | 0.838862 |
Durbin-Watson stat | 2.028211 | | | |
| | | | |
| | | | |
加权修正以后的模型四怀特检验结果如下:
White Heteroskedasticity Test: | |
| | | | |
| | | | |
F-statistic | 6.555091 | Probability | 0.000870 |
Obs*R-squared | 15.56541 | Probability | 0.003661 |
| | | | |
| | | | |
可以看出并没有消除异方差性,加权修正无效。
下面采用1/abs(e)权变量进行WLS回归,结果如下:
模型五:
Dependent Variable: LOG(Y) | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:10 | | |
Sample: 1 31 | | | |
Included observations: 31 | | |
Weighting series: 1/ABS(E) | | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 1.227929 | 0.297268 | 4.130708 | 0.0003 |
LOG(X1) | 0.375748 | 0.056830 | 6.611734 | 0.0000 |
LOG(X2) | 0.510120 | 0.017781 | 28.68847 | 0.0000 |
| | | | |
| | | | |
| Weighted Statistics | | |
| | | | |
| | | | |
R-squared | 0.999990 | Mean dependent var | 7.558578 |
Adjusted R-squared | 0.9999 | S.D. dependent var | 12.31758 |
S.E. of regression | 0.041062 | Akaike info criterion | -3.455703 |
Sum squared resid | 0.047210 | Schwarz criterion | -3.316930 |
Log likelihood | 56.56339 | F-statistic | 1960.131 |
Durbin-Watson stat | 2.487309 | Prob(F-statistic) | 0.000000 |
| | | | |
| | | | |
| Unweighted Statistics | | |
| | | | |
| | | | |
R-squared | 0.794514 | Mean dependent var | 7.448704 |
Adjusted R-squared | 0.779836 | S.D. dependent var | 0.38 |
S.E. of regression | 0.171099 | Sum squared resid | 0.819694 |
Durbin-Watson stat | 2.007122 | | | |
| | | | |
| | | | |
对加权以后的模型五进行怀特检验如下:
White Heteroskedasticity Test: | |
| | | | |
| | | | |
F-statistic | 0.1995 | Probability | 0.936266 |
Obs*R-squared | 0.923778 | Probability | 0.921125 |
| | | | |
| | | | |
可以看出,模型已经不再存在异方差问题,模型五可以作为修正以后的最终模型。
二、随机误差项序列相关性问题的检验与修正
模型一:
Dependent Variable: Y | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:48 | | |
Sample: 1991 2011 | | |
Included observations: 21 | | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 178.9755 | 55.021 | 3.250305 | 0.0042 |
X | 0.020002 | 0.001134 | 17.157 | 0.0000 |
| | | | |
| | | | |
R-squared | 0.942463 | Mean dependent var | 922.9095 |
Adjusted R-squared | 0.939435 | S.D. dependent var | 659.3491 |
S.E. of regression | 162.2653 | Akaike info criterion | 13.10673 |
Sum squared resid | 500270.3 | Schwarz criterion | 13.20621 |
Log likelihood | -135.6207 | F-statistic | 311.2248 |
Durbin-Watson stat | 0.658849 | Prob(F-statistic) | 0.000000 |
| | | | |
| | | | |
初始回归模型一经济意义合理,统计指标较为理想,但DW值偏低,模型可能存在序列相关性。
(一)序列相关性的检验方法
1、自回归模型检验法
Dependent Variable: E | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:49 | | |
Sample (adjusted): 1992 2011 | | |
Included observations: 20 after adjustments | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
E(-1) | 0.717080 | 0.201852 | 3.552497 | 0.0021 |
| | | | |
| | | | |
R-squared | 0.3929 | Mean dependent var | 2.801737 |
Adjusted R-squared | 0.3929 | S.D. dependent var | 161.7297 |
S.E. of regression | 125.3870 | Akaike info criterion | 12.54939 |
Sum squared resid | 298716.2 | Schwarz criterion | 12.59918 |
Log likelihood | -124.4939 | Durbin-Watson stat | 1.080741 |
| | | | |
| | | | |
说明模型一的随机误差项至少存在一阶正序列相关性,结合该自回归模型的DW值为1.08,怀疑存在更高阶的序列相关,继续引入e(-2)如下:
Dependent Variable: E | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:49 | | |
Sample (adjusted): 1993 2011 | | |
Included observations: 19 after adjustments | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
E(-1) | 1.094974 | 0.178768 | 6.125108 | 0.0000 |
E(-2) | -0.815010 | 0.199977 | -4.075513 | 0.0008 |
| | | | |
| | | | |
R-squared | 0.692885 | Mean dependent var | 7.790341 |
Adjusted R-squared | 0.674819 | S.D. dependent var | 1.5730 |
S.E. of regression | 93.84710 | Akaike info criterion | 12.02051 |
Sum squared resid | 149723.7 | Schwarz criterion | 12.11993 |
Log likelihood | -112.1949 | Durbin-Watson stat | 1.945979 |
| | | | |
| | | | |
由于e(-2)的t检验显著,说明模型一的随机误差项确实存在二阶正序列相关性,结合该二阶自回归模型的DW值为1.95,基本确定不存在更高阶的序列相关。
Breusch-Godfrey Serial Correlation LM Test: | |
| | | | |
| | | | |
F-statistic | 0.8858 | Probability | 0.431668 |
Obs*R-squared | 1.9924 | Probability | 0.368077 |
| | | | |
| | | | |
可以看出二阶自回归模型的随机误差项不存在序列相关性,论证了原模型仅存在二阶序列相关。
2、DW检验法
0 DL DU3、LM检验法原理:一方面,根据上面的假设检验结果判断是否存在序列相关性,即根据(n-p)*R2统计量值与卡方检验临界值χ2(P)进行比较,其中n为原模型样本容量,P为选择的滞后阶数,R2为下面辅助回归模型的可决系数。若(n-p)*R2﹥χ2(P),则拒绝不序列相关的原假设,说明模型存在显著的序列相关性;另一方面,结合下面的辅助回归模型中残差滞后变量是否通过t检验及DW值判断序列相关的具体阶数,方法与上面的自回归模型检验法相同。
选择滞后一阶检验:
Breusch-Godfrey Serial Correlation LM Test: | |
| | | | |
| | | | |
F-statistic | 13.15036 | Probability | 0.001931 |
Obs*R-squared | 8.865308 | Probability | 0.002906 |
| | | | |
| | | | |
| | | | |
Test Equation: | | |
Dependent Variable: RESID | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:51 | | |
Presample missing value lagged residuals set to zero. |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | -14.24472 | 43.18361 | -0.3298 | 0.7453 |
X | 0.000714 | 0.000907 | 0.786617 | 0.4417 |
RESID(-1) | 0.763263 | 0.210477 | 3.626342 | 0.0019 |
| | | | |
| | | | |
R-squared | 0.422158 | Mean dependent var | 1.30E-13 |
Adjusted R-squared | 0.357953 | S.D. dependent var | 158.1566 |
S.E. of regression | 126.7275 | Akaike info criterion | 12.65352 |
Sum squared resid | 2077.4 | Schwarz criterion | 12.80274 |
Log likelihood | -129.8619 | F-statistic | 6.575179 |
Durbin-Watson stat | 1.159275 | Prob(F-statistic) | 0.007183 |
| | | | |
| | | | |
说明原模型确实存在一阶序列相关性,结合该辅助回归模型的DW值为1.16,怀疑存在更高阶的序列相关,引入滞后二阶检验如下:Breusch-Godfrey Serial Correlation LM Test: | |
| | | | |
| | | | |
F-statistic | 20.49152 | Probability | 0.000030 |
Obs*R-squared | 14.84303 | Probability | 0.000598 |
| | | | |
| | | | |
| | | | |
Test Equation: | | |
Dependent Variable: RESID | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:51 | | |
Presample missing value lagged residuals set to zero. |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 14.063 | 32.40987 | 0.433961 | 0.6698 |
X | -0.000628 | 0.000742 | -0.846303 | 0.4091 |
RESID(-1) | 1.108488 | 0.176127 | 6.293696 | 0.0000 |
RESID(-2) | -0.918175 | 0.226004 | -4.0623 | 0.0008 |
| | | | |
| | | | |
R-squared | 0.706811 | Mean dependent var | 1.30E-13 |
Adjusted R-squared | 0.655072 | S.D. dependent var | 158.1566 |
S.E. of regression | 92.88633 | Akaike info criterion | 12.07027 |
Sum squared resid | 146673.8 | Schwarz criterion | 12.26923 |
Log likelihood | -122.7379 | F-statistic | 13.66102 |
Durbin-Watson stat | 1.950263 | Prob(F-statistic) | 0.000087 |
| | | | |
| | | | |
由于e(-2)的t检验显著,说明模型一的随机误差项确实存在二阶正序列相关性,结合该二阶自回归模型的DW值为1.95,基本确定不存在更高阶的序列相关。当然可以继续引入滞后三阶检验如下:
Breusch-Godfrey Serial Correlation LM Test: | |
| | | | |
| | | | |
F-statistic | 12.85743 | Probability | 0.000157 |
Obs*R-squared | 14.84303 | Probability | 0.001956 |
| | | | |
| | | | |
| | | | |
Test Equation: | | |
Dependent Variable: RESID | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:52 | | |
Presample missing value lagged residuals set to zero. |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 14.067 | 33.40734 | 0.421005 | 0.6794 |
X | -0.000628 | 0.000765 | -0.820934 | 0.4237 |
RESID(-1) | 1.108206 | 0.271327 | 4.084401 | 0.0009 |
RESID(-2) | -0.917559 | 0.499523 | -1.836870 | 0.0849 |
RESID(-3) | -0.000601 | 0.431119 | -0.001395 | 0.99 |
| | | | |
| | | | |
R-squared | 0.706811 | Mean dependent var | 1.30E-13 |
Adjusted R-squared | 0.633514 | S.D. dependent var | 158.1566 |
S.E. of regression | 95.74504 | Akaike info criterion | 12.16551 |
Sum squared resid | 146673.8 | Schwarz criterion | 12.41421 |
Log likelihood | -122.7379 | F-statistic | 9.3071 |
Durbin-Watson stat | 1.950030 | Prob(F-statistic) | 0.000363 |
| | | | |
| | | | |
可以看出并不存在三阶序列相关。(二)广义差分法修正
1、方法原理
参考教材自己推导二元线性回归模型存在二阶序列相关时的广义差分模型。
2、上机实现结果分析
模型二:
Dependent Variable: Y | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:55 | | |
Sample (adjusted): 1992 2011 | | |
Included observations: 20 after adjustments | |
Convergence achieved after 8 iterations | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 160.02 | 182.17 | 0.875323 | 0.3936 |
X | 0.021469 | 0.003072 | 6.9875 | 0.0000 |
AR(1) | 0.730078 | 0.203352 | 3.590223 | 0.0023 |
| | | | |
| | | | |
R-squared | 0.9570 | Mean dependent var | 958.0450 |
Adjusted R-squared | 0.960402 | S.D. dependent var | 655.9980 |
S.E. of regression | 130.5388 | Akaike info criterion | 12.71870 |
Sum squared resid | 2686.3 | Schwarz criterion | 12.86806 |
Log likelihood | -124.1870 | F-statistic | 231.4107 |
Durbin-Watson stat | 1.116066 | Prob(F-statistic) | 0.000000 |
| | | | |
| | | | |
Inverted AR Roots | .73 | | |
| | | | |
| | | | |
由于AR(1)通过t检验,说明模型一确实至少存在一阶序列相关,结合DW值为1.12,怀疑存在更高阶序列相关性, LM检验结果如下: Breusch-Godfrey Serial Correlation LM Test: | |
| | | | |
| | | | |
F-statistic | 6.380262 | Probability | 0.009885 |
Obs*R-squared | 9.193288 | Probability | 0.010086 |
| | | | |
| | | | |
| | | | |
Test Equation: | | |
Dependent Variable: RESID | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:57 | | |
Presample missing value lagged residuals set to zero. |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 80.86347 | 145.23 | 0.556665 | 0.5860 |
X | -0.003554 | 0.002602 | -1.365556 | 0.1922 |
AR(1) | -0.572841 | 0.437314 | -1.309909 | 0.2099 |
RESID(-1) | 1.029157 | 0.339541 | 3.031022 | 0.0084 |
RESID(-2) | -0.187923 | 0.598223 | -0.314136 | 0.7577 |
| | | | |
| | | | |
R-squared | 0.4596 | Mean dependent var | -7.24E-11 |
Adjusted R-squared | 0.315575 | S.D. dependent var | 123.4773 |
S.E. of regression | 102.1528 | Akaike info criterion | 12.30313 |
Sum squared resid | 156527.8 | Schwarz criterion | 12.55207 |
Log likelihood | -118.0313 | F-statistic | 3.190131 |
Durbin-Watson stat | 2.021319 | Prob(F-statistic) | 0.043963 |
| | | | |
| | | | |
说明模型一在一阶广义差分修正后仍然存在序列相关性。继续引入AR(2)进行修正。模型三:
Dependent Variable: Y | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 09:58 | | |
Sample (adjusted): 1993 2011 | | |
Included observations: 19 after adjustments | |
Convergence achieved after 5 iterations | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | 210.5233 | 42.67117 | 4.933618 | 0.0002 |
X | 0.0116 | 0.000987 | 19.17360 | 0.0000 |
AR(1) | 1.095446 | 0.185254 | 5.913194 | 0.0000 |
AR(2) | -0.945384 | 0.250542 | -3.773357 | 0.0018 |
| | | | |
| | | | |
R-squared | 0.981385 | Mean dependent var | 998.3158 |
Adjusted R-squared | 0.977662 | S.D. dependent var | 8.0772 |
S.E. of regression | 96.860 | Akaike info criterion | 12.16909 |
Sum squared resid | 140730.5 | Schwarz criterion | 12.36792 |
Log likelihood | -111.60 | F-statistic | 263.6012 |
Durbin-Watson stat | 2.002336 | Prob(F-statistic) | 0.000000 |
| | | | |
| | | | |
Inverted AR Roots | .55+.80i | .55-.80i | |
| | | | |
| | | | |
由于AR(1)和AR(2)都通过t检验,说明模型一确实至少存在二阶序列相关,结合DW值为2.00,确定不存在更高阶序列相关性,LM检验结果如下:Breusch-Godfrey Serial Correlation LM Test: | |
| | | | |
| | | | |
F-statistic | 0.880914 | Probability | 0.437745 |
Obs*R-squared | 2.267656 | Probability | 0.321799 |
| | | | |
| | | | |
可以看出,二阶广义差分修正后的模型三不再存在序列相关性,可以作为最终选择模型。三、多元线性回归模型分析中解释变量的选取问题—多重共线性的检验与修正
假设用解释变量x1、x2、x3、x4来解释Y。
模型一:
Dependent Variable: Y | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 10:35 | | |
Sample: 1994 2011 | | |
Included observations: 18 | | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | -43872.27 | 14512.82 | -3.023002 | 0.0086 |
X1 | 4.561055 | 0.246993 | 18.46632 | 0.0000 |
X2 | 0.670491 | 0.130022 | 5.156760 | 0.0001 |
| | | | |
| | | | |
R-squared | 0.961029 | Mean dependent var | 44127.11 |
Adjusted R-squared | 0.955833 | S.D. dependent var | 4409.100 |
S.E. of regression | 926.6166 | Akaike info criterion | 16.65197 |
Sum squared resid | 12879274 | Schwarz criterion | 16.80036 |
Log likelihood | -146.8677 | F-statistic | 184.9504 |
Durbin-Watson stat | 2.014913 | Prob(F-statistic) | 0.000000 |
| | | | |
| | | | |
模型二:Dependent Variable: Y | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 10:36 | | |
Sample: 1994 2011 | | |
Included observations: 18 | | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | -11978.18 | 14072.92 | -0.851151 | 0.4090 |
X1 | 5.255935 | 0.268595 | 19.56828 | 0.0000 |
X2 | 0.408432 | 0.121974 | 3.348522 | 0.0048 |
X3 | -0.194609 | 0.054533 | -3.568637 | 0.0031 |
| | | | |
| | | | |
R-squared | 0.979593 | Mean dependent var | 44127.11 |
Adjusted R-squared | 0.975220 | S.D. dependent var | 4409.100 |
S.E. of regression | 694.0715 | Akaike info criterion | 16.11616 |
Sum squared resid | 6744293. | Schwarz criterion | 16.31402 |
Log likelihood | -141.0454 | F-statistic | 224.0086 |
Durbin-Watson stat | 1.528658 | Prob(F-statistic) | 0.000000 |
| | | | |
| | | | |
模型三: | Dependent Variable: Y | | |
Method: Least Squares | | |
Date: 07/29/12 Time: 10:37 | | |
Sample: 1994 2011 | | |
Included observations: 18 | | |
| | | | |
| | | | |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | |
| | | | |
C | -13056.00 | 13437.43 | -0.971614 | 0.3490 |
X1 | 6.167476 | 0.2080 | 9.605468 | 0.0000 |
X2 | 0.416026 | 0.1113 | 3.573713 | 0.0034 |
X3 | -0.168603 | 0.0546 | -3.085344 | 0.0087 |
X4 | -0.094481 | 0.061028 | -1.548172 | 0.1456 |
| | | | |
| | | | |
R-squared | 0.982769 | Mean dependent var | 44127.11 |
Adjusted R-squared | 0.977468 | S.D. dependent var | 4409.100 |
S.E. of regression | 661.8392 | Akaike info criterion | 16.05806 |
Sum squared resid | 5694404. | Schwarz criterion | 16.30538 |
Log likelihood | -139.5225 | F-statistic | 185.3683 |
Durbin-Watson stat | 1.799755 | Prob(F-statistic) | 0.000000 |
| | | | |
| | | | |
(一)新增解释变量是否应该引入主要观察引入后相比引入前模型的调整可决系数是否变大、AIC是否变小、新增解释变量的t检验是否通过。比较模型一和模型二,认为X3应该引入。
(二)同时引入所有解释变量后变量的筛选
保证选择不同解释变量组合的模型包含的解释变量均通过经济意义检验、t检验,且AIC取值最小。若模型中一个或多个解释变量没有通过经济意义检验或t检验,可以直接删除淘汰。虽然模型三中AIC数值小于模型二,但X4没有通过t检验,而且实际上X4也没有通过经济意义检验(这里由于没有说明各变量的经济意义,无法看出是否通过经济意义检验)。因此应该选择模型二为最优模型。
四、虚拟变量模型应用分析
考察1990年前后的中国居民的总储蓄-收入关系是否已发生变化。
(一)分析步骤
1、初始理论模型设定:建立一元线性储蓄回归模型。
2、定义虚拟变量
3、构建虚拟变量模型——把虚拟变量引入到初始模型(一般以混合方式较为稳妥)
4、写出不同属性(组合)条件下的条件期望函数(目的在于可以直观的看出属性差异是否显著取决于哪些参数的取值)
分别写出1990年后期与前期的储蓄函数:
在统计检验中,如果3=0的假设被拒绝,则说明两个时期中储蓄函数的截距不同,若4=0的假设被拒绝,则说明两个时期中储蓄函数的斜率不同。
5、利用样本数据对步骤3中的虚拟变量模型进行参数估计
T:(-6.11) (22.) (4.33) (-2.55)
统计指标略。
6、模型结果分析:重点关注包含虚拟变量的解释变量是否通过变量的显著性检验(t检验),通过t检验即说明对相关截距项或斜率项产生显著性影响。
由3与4的t检验可知:参数显著地不等于0,强烈显示出两个时期的回归是相异的。上述模型即为最终模型,不需要重新修正。
7、利用解释变量选取的方法对虚拟变量模型进行必要的调整——模型的修正
考虑其他情况:一是3与4的t检验均没有通过,说明虚拟变量D对原储蓄模型的截距和斜率均无显著性影响,90年前后的储蓄函数是重合的,可以进行重合回归,即直接LS Y C X命令进行回归即可;二是3的t检验通过,但4的t检验没有通过,说明虚拟变量D对原储蓄模型的截距有显著性影响,对斜率无显著性影响,90年前后的储蓄函数是平行的,可以进行平行回归,即直接LS Y C X D命令进行回归即可;三是3的t检验没有通过,但4的t检验通过,说明虚拟变量D对原储蓄模型的截距无显著性影响,对斜率有显著性影响,90年前后的储蓄函数是汇合的,可以进行汇合回归,即直接LS Y C X D*X命令进行回归即可。
8、根据修正后的模型分别写出不同属性(组合)的样本回归函数。
把虚拟变量取值代入修正以后的模型即可。
1990年前:
1990年后: