最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

九年级上册数学期末考试试题及答案

来源:动视网 责编:小OO 时间:2025-09-24 16:57:33
文档

九年级上册数学期末考试试题及答案

九年级(上)期末数学测试(一)班级姓名学号成绩一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏内)1.(3分)在,,,,中最简二次根式的个数是()A.1个B.2个C.3个D.4个2.(3分)(2010•南宁)下列计算结果正确的是()A.+=B.3﹣=3C.×=D.=53.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF
推荐度:
导读九年级(上)期末数学测试(一)班级姓名学号成绩一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏内)1.(3分)在,,,,中最简二次根式的个数是()A.1个B.2个C.3个D.4个2.(3分)(2010•南宁)下列计算结果正确的是()A.+=B.3﹣=3C.×=D.=53.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF
九年级(上)期末数学测试(一)

 班级                  姓名                 学号                 成绩           

一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏内)

1.(3分)在,,,,中最简二次根式的个数是(  )

 A.1个B.2个C.3个D.4个
2.(3分)(2010•南宁)下列计算结果正确的是(  )

 A.+=

B.3﹣=3

C.×=

D.=5

 

3.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有(  )

 A.1个B.2个C.3个D.4个
4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF的形状是(  )

 A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形
 

5.(3分)如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为(  )

 A.±3B.3C.﹣3D.都不对
 

6.(3分)下列方程中,有实数根的是(  )

 A.x2+4=0

B.x2+x+3=0

C.D.5x2+1=2x

 

7.(3分)用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为(  )

 A.y=(x+3)2+2

B.y=(x﹣3)2﹣2

C.y=(x﹣6)2﹣2

D.y=(x﹣3)2+2

 

8.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为(  )

 A.x(x+1)=1035B.x(x﹣1)=1035×2C.x(x﹣1)=1035D.2x(x+1)=1035
 

9.(3分)(2012•淄博)如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为(  )

 A.B.C.D.
 

10.(3分)已知⊙01和⊙O2的半径分别为2和5,且圆心距O1O2=7,则这两圆的位置关系是(  )

 A.外切B.内切C.相交D.相离
 

11.(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为(  )

 A.48πB.24πC.12πD.
 

12.(3分)PA、PB分别切⊙O于A、B两点,C为⊙O上一动点(点C不与A、B重合),∠APB=50°,则∠ACB=(  )

 A.100°B.115°C.65°或115°D.65°
 

二、填空题(共6小题,每小题4分,满分24分)

13.(4分)(2012•临沂)计算:4﹣= _________ .

 

14.(4分)点A(3,n)关于原点对称的点的坐标为(﹣3,2),那么n= _________ .

 

15.(4分)(2012•苏州二模)方程x(x﹣1)=x的根是 _________ .

 

16.(4分)已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m= _________ .

 

17.(4分)如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为 _________ ;若∠P=40°,则∠DOE= _________ .

 

18.(4分)(2013•大港区一模)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到 A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为 _________ .

 

三、解答题(本题共7个小题,满分60分)

19.(5分)计算:.

 

20.(10分)解下列方程.

(1)x2+4x﹣5=0;

(2)x(2x+3)=4x+6.

 

21.(5分)△ABC三个顶点A,B,C在平面直角坐标系中位置如图所示.将△ABC绕C点顺时针旋转90°,画出旋转后的△A2B2C2,并写出A2的坐标.

 

22.(10分)(2011•天津)已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.

(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);

(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.

 

23.(8分)(2008•山西)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.

 

24.(12分)(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.

(1)求平均每次下调的百分率;

(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:

方案一:打九折销售;

方案二:不打折,每吨优惠现金200元.

试问小华选择哪种方案更优惠,请说明理由.

 

25.(10分)一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.

(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为 _________ ,周长为 _________ .

(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为 _________ ,周长为 _________ .

(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为 _________ .

(4)在图3情况下,若AD=1,求出重叠部分图形的周长.

参与试题解析

 

一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏内)

1.(3分)在,,,,中最简二次根式的个数是(  )

 A.1个B.2个C.3个D.4个
考点:

最简二次根式.24484

分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
解答:解:因为=,=2,=,

所以符合条件的最简二次根式为,,共2个.

故选:B.

点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:

(1)被开方数不含分母;

(2)被开方数不含能开得尽方的因数或因式.

 

2.(3分)(2010•南宁)下列计算结果正确的是(  )

 A.+=

B.3﹣=3

C.×=

D.=5

考点:

二次根式的混合运算.24484

分析:按照二次根式的运算法则进行计算即可.
解答:解:A、和不是同类二次根式,不能合并,故A错误;

B、3﹣=(3﹣1)=2,故B错误;

C、×==,故C正确;

D、,故D错误;

故选C.

点评:此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.
 

3.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有(  )

 A.1个B.2个C.3个D.4个
考点:

中心对称图形;轴对称图形.24484

分析:根据轴对称图形与中心对称图形的概念求解.
解答:解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;

第二个图形既是轴对称图形又是中心对称图形;

第三个图形既是轴对称图形又是中心对称图形;

第四个图形既是轴对称图形又是中心对称图形;

所以,既是轴对称图形又是中心对称图形共有3个.

故选C.

点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
 

4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF的形状是(  )

 A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形
考点:

旋转的性质;正方形的性质.24484

分析:根据旋转的性质知,△ABE≌△CBF,则BE=BF,所以△BEF为等腰直角三角形.
解答:解:∵把△ABE绕点B旋转到△CBF,

∴△ABE≌△CBF,

∴BE=BF,

∵∠ABC=90°,

∴△BEF为等腰直角三角形.

故选:D.

点评:此题主要考查了旋转的性,根据已知得出旋转角以及对应边是解题关键.
 

5.(3分)如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为(  )

 A.±3B.3C.﹣3D.都不对
考点:

一元二次方程的定义.24484

分析:本题根据一元二次方程的定答,一元二次方程必须满足四个条件:

(1)未知数的最高次数是2;

(2)二次项系数不为0;

(3)是整式方程;

(4)含有一个未知数.据此即可得到m2﹣7=2,m﹣3≠0,即可求得m的范围.

解答:解:由一元二次方程的定义可知,

解得m=﹣3.

故选C.

点评:要特别注意二次项系数m﹣3≠0这一条件,当m﹣3=0时,上面的方程就是一元一次方程了.

 

6.(3分)下列方程中,有实数根的是(  )

 A.x2+4=0

B.x2+x+3=0

C.D.5x2+1=2x

考点:

根的判别式.24484

专题:

计算题.
分析:先把D中的方程化为一般式,再计算四个方程的判别式的值,然后根据判别式的意义判断.
解答:解:A、△=0﹣4×4<0,方程没有实数根,所以A选项错误;

B、△=1﹣4×3<0,方程没有实数根,所以B选项错误;

C、△=(﹣)2﹣4×2×(﹣1)>0,方程有两个不相等的实数根,所以C选项正确;

D、5x2﹣2x+1=0,△=4﹣4×5×1<0,方程没有实数根,所以D选项错误.

故选C.

点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.

 

7.(3分)用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为(  )

 A.y=(x+3)2+2

B.y=(x﹣3)2﹣2

C.y=(x﹣6)2﹣2

D.y=(x﹣3)2+2

考点:

二次函数的三种形式.24484

专题:

计算题;配方法.
分析:由于二次项系数是1,利用配方法直接加上一次项系数一半的平方来凑完全平方式,可把一般式转化为顶点式.
解答:解:y=x2﹣6x+11,

=x2﹣6x+9+2,

=(x﹣3)2+2.

故选D.

点评:二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);

(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).

 

8.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为(  )

 A.x(x+1)=1035B.x(x﹣1)=1035×2C.x(x﹣1)=1035D.2x(x+1)=1035
考点:

由实际问题抽象出一元二次方程.24484

专题:

其他问题.
分析:如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.
解答:解:∵全班有x名同学,

∴每名同学要送出(x﹣1)张;

又∵是互送照片,

∴总共送的张数应该是x(x﹣1)=1035.

故选C.

点评:本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.
 

9.(3分)(2012•淄博)如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为(  )

 A.B.C.D.
考点:

垂径定理;勾股定理.24484

分析:首先过点O作OD⊥AB于点D,由垂径定理,即可求得AD,BD的长,然后由勾股定理,可求得OD的长,然后在Rt△OCD中,利用勾股定理即可求得OC的长.
解答:解:过点O作OD⊥AB于点D,

∵弦AB=2,

∴AD=BD=AB=,AC=AB=,

∴CD=AD﹣AC=,

∵⊙O的半径为2,

即OB=2,

∴在Rt△OBD中,OD==1,

在Rt△OCD中,OC==.

故选D.

点评:此题考查了垂径定理与勾股定理的应用.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
 

10.(3分)已知⊙01和⊙O2的半径分别为2和5,且圆心距O1O2=7,则这两圆的位置关系是(  )

 A.外切B.内切C.相交D.相离
考点:

圆与圆的位置关系.24484

分析:由⊙O1与⊙O2的半径分别为2、5,且圆心距O1O2=7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.

解答:解:∵⊙O1与⊙O2的半径分别为2和5,且圆心距O1O2=7,

又∵2+5=7,

∴两圆的位置关系是外切.

故选A.

点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.
 

11.(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为(  )

 A.48πB.24πC.12πD.
考点:

相切两圆的性质.24484

分析:由图可知,四个小圆的直径和等于大圆直径,4个小圆大小相等,故小圆直径为12÷4=3,根据周长公式求解.
解答:解:大圆周长为12π,四个小圆周长和为4×(12÷4)π=12π,

5个圆的周长的和为12π+12π=24π.故选B.

点评:本题主要考查相切两圆的性质,解题的关键是熟记圆周长的计算公式:直径×π.
 

12.(3分)PA、PB分别切⊙O于A、B两点,C为⊙O上一动点(点C不与A、B重合),∠APB=50°,则∠ACB=(  )

 A.100°B.115°C.65°或115°D.65°
考点:

切线的性质.24484

分析:画出图形,连接OA、OB,则OA⊥AP,OB⊥PB,求出∠AOB,继而分类讨论,可得出∠AC'B及∠ACB的度数.
解答:解:连接OA、OB,

∵PA、PB分别切⊙O于A、B两点,

∴OA⊥AP,OB⊥PB,

①当点C在优弧AB上时,

∠AOB=180°﹣∠APB=130°,

∴∠AC'B=65°;

②当点C在劣弧AB上时,

∠ACB=180°﹣∠AC'B=135°.

综上可得:∠ACB=65°或115°.

故选C.

点评:本题考查了切线的性质,需要用到的知识点为:①圆的切线垂直于经过切点的半径,②圆周角定理,③圆内接四边形的对角互补.
 

二、填空题(共6小题,每小题4分,满分24分)

13.(4分)(2012•临沂)计算:4﹣= 0 .

考点:

二次根式的加减法.24484

专题:

计算题.
分析:先将二次根式化为最简,然后合并同类二次根式即可.
解答:解:原式=4×﹣2=0.

故答案为:0.

点评:此题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.
 

14.(4分)点A(3,n)关于原点对称的点的坐标为(﹣3,2),那么n= ﹣2 .

考点:

关于原点对称的点的坐标.24484

分析:根据两点关于原点的对称,横纵坐标符号相反,即可得出n的值.
解答:解:∵A(3,n)关于原点对称的点的坐标为(﹣3,2),

∴n=﹣2,

故答案为:﹣2.

点评:本题主要考查了平面直角坐标系内关于原点对称的点的特点,关键是把握坐标变化规律.
 

15.(4分)(2012•苏州二模)方程x(x﹣1)=x的根是 x1=0,x2=2 .

考点:

解一元二次方程-因式分解法.24484

分析:先将原方程整理为一般形式,然后利用因式分解法解方程.
解答:解:由原方程,得x2﹣2x=0,

∴x(x﹣2)=0,

∴x﹣2=0或x=0,

解得x1=2,x2=0.

故答案为:x1=2,x2=0.

点评:本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.
 

16.(4分)已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m= 2 .

考点:

一元二次方程的解;一元二次方程的定义.24484

分析:根据条件,把x=0代入原方程可求m的值,注意二次项系数m+2≠0.
解答:解:依题意,当x=0时,原方程为m2﹣4=0,

解得m1=﹣2,m2=2,

∵二次项系数m+2≠0,即m≠﹣2,

∴m=2.

故本题答案为:2.

点评:本题考查了一元二次方程解的定义.方程的解是使方程左右两边成立的未知数的值.
 

17.(4分)如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为 16cm ;若∠P=40°,则∠DOE= 70° .

考点:

切线长定理.24484

分析:根据切线长定理,可得DC=DA,EC=EB,继而可将△PCD的周长转化为PA+PB,连接OA、OB、OD、OE、OC,则可求出∠AOB的度数,从而可得∠DOE的度数.
解答:解:∵PA、PB、DE是⊙O的切线,

∴DA=DC,EC=EB,

∴△PDE的周长=PD+DC+EC+PE=PA+PB=2PA=16cm.

连接OA、OB、OD、OE、OC,

则∠AOB=180°﹣∠P=140°,

∴∠DOE=∠COD+∠COE=(∠BOC+∠AOC)=∠BOC=70°.

故答案为:16cm、70°.

点评:此题考查了切线长定理及切线的性质,难度适中,注意掌握数形结合思想的应用.
 

18.(4分)(2013•大港区一模)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到 A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为 20πcm .

考点:

弧长的计算;旋转的性质.24484

分析:顶点A从开始到结束所经过的路径是一段弧长是以点C为圆心,AC为半径,旋转的角度是180﹣60=120°,所以根据弧长公式可得.
解答:解:=20πcm.

故答案为20πcm.

点评:本题考查了弧长的计算以及旋转的性质,解本题的关键是弄准弧长的半径和圆心角的度数.
 

三、解答题(本题共7个小题,满分60分)

19.(5分)计算:.

考点:

二次根式的混合运算.24484

专题:

计算题.
分析:先根据二次根式的乘除法法则得到原式=﹣+2,然后利用二次根式的性质化简后合并即可.

解答:解:原式=﹣+2

=4﹣+2

=4+.

点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.
 

20.(10分)解下列方程.

(1)x2+4x﹣5=0;

(2)x(2x+3)=4x+6.

考点:

解一元二次方程-因式分解法.24484

分析:(1)分解因式,即可得出两个一元一次方程,求出方程的解即可.

(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.

解答:解:(1)分解因式得:(x+5)(x﹣1)=0,

x+5=0,x﹣1=0,

x1=﹣5,x2=1;

(2)移项得:x(2x+3)﹣2(2x+3)=0,

(2x+3)(x﹣2)=0,

2x+3=0,x﹣2=0,

x1=﹣,x2=2.

点评:本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.
 

21.(5分)△ABC三个顶点A,B,C在平面直角坐标系中位置如图所示.将△ABC绕C点顺时针旋转90°,画出旋转后的△A2B2C2,并写出A2的坐标.

考点:

作图-旋转变换.24484

专题:

作图题.
分析:根据网格结构找出点A、B、C绕点C顺时针旋转90°后的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标.

解答:解:△A2B2C2如图所示;

点A2(8,3).

点评:本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
 

22.(10分)(2011•天津)已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.

(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);

(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.

考点:

切线的性质;含30度角的直角三角形;勾股定理;菱形的性质.24484

专题:

几何综合题.
分析:(1)连接OC,根据切线的性质得出OC⊥AB,再由勾股定理求得OA即可;

(2)根据菱形的性质,求得OD=CD,则△ODC为等边三角形,可得出∠A=30°,即可求得的值.

解答:解:(1)如图①,连接OC,则OC=4,

∵AB与⊙O相切于点C,∴OC⊥AB,

∴在△OAB中,由AO=OB,AB=10,

得AC=AB=5.

在Rt△AOC中,由勾股定理得OA===;

(2)如图②,连接OC,则OC=OD,

∵四边形ODCE为菱形,∴OD=CD,

∴△ODC为等边三角形,有∠AOC=60°.

由(1)知,∠OCA=90°,∴∠A=30°,

∴OC=OA,∴=.

点评:本题考查了切线的性质和勾股定理以及直角三角形、菱形的性质,是一道综合题,要熟练掌握.
 

23.(8分)(2008•山西)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.

考点:

切线的判定;圆周角定理.24484

专题:

证明题.
分析:要证GE是⊙O的切线,只要证明∠OEG=90°即可.
解答:证明:(证法一)连接OE,DE,

∵CD是⊙O的直径,

∴∠AED=∠CED=90°,

∵G是AD的中点,

∴EG=AD=DG,

∴∠1=∠2;

∵OE=OD,

∴∠3=∠4,

∴∠1+∠3=∠2+∠4,

∴∠OEG=∠ODG=90°,

故GE是⊙O的切线;

(证法二)连接OE,OG,

∵AG=GD,CO=OD,

∴OG∥AC,

∴∠1=∠2,∠3=∠4.

∵OC=OE,

∴∠2=∠4,

∴∠1=∠3.

又OE=OD,OG=OG,

∴△OEG≌△ODG,

∴∠OEG=∠ODG=90°,

∴GE是⊙O的切线.

点评:本题考查切线的判定方法及圆周角定理运用.
 

24.(12分)(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.

(1)求平均每次下调的百分率;

(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:

方案一:打九折销售;

方案二:不打折,每吨优惠现金200元.

试问小华选择哪种方案更优惠,请说明理由.

考点:

一元二次方程的应用.24484

专题:

增长率问题;压轴题.
分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2列出一元二次方程求解即可;

(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.

解答:解  (1)设平均每次下调的百分率为x.

由题意,得5(1﹣x)2=3.2.

解这个方程,得x1=0.2,x2=1.8.

因为降价的百分率不可能大于1,所以x2=1.8不符合题意,

符合题目要求的是x1=0.2=20%.

答:平均每次下调的百分率是20%.

(2)小华选择方案一购买更优惠.

理由:方案一所需费用为:3.2×0.9×5000=14400(元),

方案二所需费用为:3.2×5000﹣200×5=15000(元).

∵14400<15000,

∴小华选择方案一购买更优惠.

点评:本题考查了一元二次方程的应用,在解决有关增长率的问题时,注意其固定的等量关系.
 

25.(10分)一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.

(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为 4 ,周长为 4+4 .

(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为 4 ,周长为 8 .

(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为 4 .

(4)在图3情况下,若AD=1,求出重叠部分图形的周长.

考点:

旋转的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;三角形中位线定理.24484

分析:(1)根据AC=BC=4,∠ACB=90°,得出AB的值,再根据M是AB的中点,得出AM=MC,求出重叠部分的面积,再根据AM,MC,AC的值即可求出周长;

(2)易得重叠部分是正方形,边长为AC,面积为AC2,周长为2AC.

(3)过点M分别作AC、BC的垂线MH、ME,垂足为H、E.求得Rt△MHD≌Rt△MEG,则阴影部分的面积等于正方形CEMH的面积.

(4)先过点M作ME⊥BC于点E,MH⊥AC于点H,根据∠DMH=∠EMH,MH=ME,得出Rt△DHM≌Rt△EMG,从而得出HD=GE,CE=AD,最后根据AD和DF的值,算出DM=,即可得出答案.

解答:解:(1)∵AC=BC=4,∠ACB=90°,

∴AB===4,

∵M是AB的中点,

∴AM=2,

∵∠ACM=45°,

∴AM=MC,

∴重叠部分的面积是=4,

∴周长为:AM+MC+AC=2+2+4=4+4;

故答案为:4,4+4;

(2)∵叠部分是正方形,

∴边长为×4=2,面积为×4×4=4,

周长为2×4=8.

故答案为:4,8.

(3)过点M分别作AC、BC的垂线MH、ME,垂足为H、E,

∵M是△ABC斜边AB的中点,AC=BC=4,

∴MH=BC,

ME=AC,

∴MH=ME,

又∵∠NMK=∠HME=90°,

∴∠NMH+∠HMK=90°,∠EMG+∠HMK=90°,

∴∠HMD=∠EMG,

在△MHD和△MEG中,

∵,

∴△MHD≌△MEG(ASA),

∴阴影部分的面积等于正方形CEMH的面积,

∵正方形CEMH的面积是ME•MH=×4××4=4;

∴阴影部分的面积是4;

故答案为:4.

(4)如图所示:

过点M作ME⊥BC于点E,MH⊥AC于点H,

∴四边形MECH是矩形,

∴MH=CE,

∵∠A=45°,

∴∠AMH=45°,

∴AH=MH,

∴AH=CE,

在Rt△DHM和Rt△GEM中,,

∴Rt△DHM≌Rt△GEM.

∴GE=DH,

∴AH﹣DH=CE﹣GE,

∴CG=AD,

∵AD=1,

∴DH=1.

∴DM==

∴四边形DMGC的周长为:

CE+CD+DM+ME

=AD+CD+2DM=4+2.

点评:此题考查了等腰直角三角形,利用等腰直角三角形的性质,等腰直角三角形的面积公式,正方形的面积公式,全等三角形的判定和性质求解.
 

======*以上是由明师教育编辑整理======

文档

九年级上册数学期末考试试题及答案

九年级(上)期末数学测试(一)班级姓名学号成绩一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏内)1.(3分)在,,,,中最简二次根式的个数是()A.1个B.2个C.3个D.4个2.(3分)(2010•南宁)下列计算结果正确的是()A.+=B.3﹣=3C.×=D.=53.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top