最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2009年全国统一高考数学试卷(理科)(全国卷一)及答案

来源:动视网 责编:小OO 时间:2025-09-24 17:17:41
文档

2009年全国统一高考数学试卷(理科)(全国卷一)及答案

2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个2.(5分)已知=2+i,则复数z=()A.﹣1+3iB.1﹣3iC.3+iD.3﹣i3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知双曲线﹣
推荐度:
导读2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个2.(5分)已知=2+i,则复数z=()A.﹣1+3iB.1﹣3iC.3+iD.3﹣i3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知双曲线﹣
2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)

 

一、选择题(共12小题,每小题5分,满分60分)

1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有(  )

A.3个    B.4个    C.5个    D.6个

2.(5分)已知=2+i,则复数z=(  )

A.﹣1+3i    B.1﹣3i    C.3+i    D.3﹣i

3.(5分)不等式<1的解集为(  )

A.{x|0<x<1}∪{x|x>1}    B.{x|0<x<1}    C.{x|﹣1<x<0}    D.{x|x<0}

4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为(  )

A.    B.2    C.    D.

5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(  )

A.150种    B.180种    C.300种    D.345种

6.(5分)设、、是单位向量,且,则•的最小值为(  )

A.﹣2    B.﹣2    C.﹣1    D.1﹣

7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为(  )

A.    B.    C.    D.

8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为(  )

A.    B.    C.    D.

9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为(  )

A.1    B.2    C.﹣1    D.﹣2

10.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为(  )

A.1    B.2    C.    D.4

11.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则(  )

A.f(x)是偶函数    B.f(x)是奇函数    C.f(x)=f(x+2)    D.f(x+3)是奇函数

12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=(  )

A.    B.2    C.    D.3

 

二、填空题(共4小题,每小题5分,满分20分)

13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于  .

14.(5分)设等差数列{an}的前n项和为Sn,若S9=81,则a2+a5+a8=  .

15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于  .

16.(5分)若,则函数y=tan2xtan3x的最大值为  .

 

三、解答题(共6小题,满分70分)

17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.

18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°

(I)证明:M是侧棱SC的中点;

(Ⅱ)求二面角S﹣AM﹣B的大小.

19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互,已知前2局中,甲、乙各胜1局.

(I)求甲获得这次比赛胜利的概率;

(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.

20.(12分)在数列{an}中,a1=1,an+1=(1+)an+.

(1)设bn=,求数列{bn}的通项公式;

(2)求数列{an}的前n项和Sn.

21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.

(Ⅰ)求r的取值范围;

(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.

22.(12分)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].

(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;

(2)证明:.

 

2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)

参与试题解析

 

一、选择题(共12小题,每小题5分,满分60分)

1.(5分)(2009•全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有(  )

A.3个    B.4个    C.5个    D.6个

【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.

【解答】解:A∪B={3,4,5,7,8,9},

A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.

也可用摩根律:∁U(A∩B)=(∁UA)∪(∁UB)

故选A

 

2.(5分)(2009•全国卷Ⅰ)已知=2+i,则复数z=(  )

A.﹣1+3i    B.1﹣3i    C.3+i    D.3﹣i

【分析】化简复数直接求解,利用共轭复数可求z.

【解答】解:,∴

故选B

 

3.(5分)(2009•全国卷Ⅰ)不等式<1的解集为(  )

A.{x|0<x<1}∪{x|x>1}    B.{x|0<x<1}    C.{x|﹣1<x<0}    D.{x|x<0}

【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.

【解答】解:∵<1,

∴|x+1|<|x﹣1|,

∴x2+2x+1<x2﹣2x+1.

∴x<0.

∴不等式的解集为{x|x<0}.

故选D

 

4.(5分)(2009•全国卷Ⅰ)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为(  )

A.    B.2    C.    D.

【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b的关系,从而推断出a和c的关系,答案可得.

【解答】解:由题双曲线的一条渐近线方程为,

代入抛物线方程整理得ax2﹣bx+a=0,

因渐近线与抛物线相切,所以b2﹣4a2=0,

即,

故选择C.

 

5.(5分)(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(  )

A.150种    B.180种    C.300种    D.345种

【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.

【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;

(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.

故选D

 

6.(5分)(2009•全国卷Ⅰ)设、、是单位向量,且,则•的最小值为(  )

A.﹣2    B.﹣2    C.﹣1    D.1﹣

【分析】由题意可得 =,故要求的式子即 ﹣()•+=1﹣ cos=1﹣cos,再由余弦函数的值域求出它的最小值.

【解答】解:∵、、 是单位向量,,∴,=.

∴•=﹣()•+=0﹣()•+1=1﹣ cos

=1﹣cos≥.

故选项为D

 

7.(5分)(2009•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为(  )

A.    B.    C.    D.

【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.

【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;

并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,

由余弦定理,得cosθ==.

故选D.

 

8.(5分)(2009•全国卷Ⅰ)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为(  )

A.    B.    C.    D.

【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.

【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.

∴∴由此易得.

故选A

 

9.(5分)(2009•全国卷Ⅰ)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为(  )

A.1    B.2    C.﹣1    D.﹣2

【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.

【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),

又∵

∴x0+a=1

∴y0=0,x0=﹣1

∴a=2.

故选项为B

 

10.(5分)(2009•全国卷Ⅰ)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为(  )

A.1    B.2    C.    D.4

【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.

【解答】解:如图

分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,

连CQ,BD则∠ACQ=∠PDB=60°,,

∴AC=PD=2

又∵

当且仅当AP=0,即点A与点P重合时取最小值.

故答案选C.

 

11.(5分)(2009•全国卷Ⅰ)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则(  )

A.f(x)是偶函数    B.f(x)是奇函数    C.f(x)=f(x+2)    D.f(x+3)是奇函数

【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.

【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,

∴函数f(x)关于点(1,0)及点(﹣1,0)对称,

∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,

故有f(2﹣x)=f(﹣2﹣x),

函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.

∴f(﹣x﹣1+4)=﹣f(x﹣1+4),

f(﹣x+3)=﹣f(x+3),

f(x+3)是奇函数.

故选D

 

12.(5分)(2009•全国卷Ⅰ)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=(  )

A.    B.2    C.    D.3

【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.

【解答】解:过点B作BM⊥x轴于M,

并设右准线l与x轴的交点为N,易知FN=1.

由题意,

故FM=,故B点的横坐标为,纵坐标为±

即BM=,

故AN=1,

∴.

故选A

 

二、填空题(共4小题,每小题5分,满分20分)

13.(5分)(2009•全国卷Ⅰ)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于 ﹣240 .

【分析】首先要了解二项式定理:(a+b)n=Cn0anb0+Cn1an﹣1b1+Cn2an﹣2b2++Cnran﹣rbr++Cnna0bn,各项的通项公式为:Tr+1=Cnran﹣rbr.然后根据题目已知求解即可.

【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,

含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.

由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.

故答案为﹣240.

 

14.(5分)(2009•全国卷Ⅰ)设等差数列{an}的前n项和为Sn,若S9=81,则a2+a5+a8= 27 .

【分析】由s9解得a5即可.

【解答】解:∵

∴a5=9

∴a2+a5+a8=3a5=27

故答案是27

 

15.(5分)(2009•全国卷Ⅰ)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于 20π .

【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.

【解答】解:在△ABC中AB=AC=2,∠BAC=120°,

可得

由正弦定理,可得△ABC外接圆半径r=2,

设此圆圆心为O',球心为O,在RT△OBO'中,

易得球半径,

故此球的表面积为4πR2=20π

故答案为:20π

 

16.(5分)(2009•全国卷Ⅰ)若,则函数y=tan2xtan3x的最大值为 ﹣8 .

【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.

【解答】解:令tanx=t,∵,

故填:﹣8.

 

三、解答题(共6小题,满分70分)

17.(10分)(2009•全国卷Ⅰ)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.

【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.

【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,

则由正弦定理及余弦定理有:

化简并整理得:2(a2﹣c2)=b2.

又由已知a2﹣c2=2b∴4b=b2.

解得b=4或b=0(舍);

法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.

又a2﹣c2=2b,b≠0.

所以b=2ccosA+2①又sinAcosC=3cosAsinC,

∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,

即sinB=4cosAsinC由正弦定理得,

故b=4ccosA②由①,②解得b=4.

 

18.(12分)(2009•全国卷Ⅰ)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°

(I)证明:M是侧棱SC的中点;

(Ⅱ)求二面角S﹣AM﹣B的大小.

【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;

法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;

法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.

(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.

【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,

连ME、NB,则MN⊥面ABCD,ME⊥AB,

设MN=x,则NC=EB=x,

在RT△MEB中,∵∠MBE=60°∴.

在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2

解得x=1,从而∴M为侧棱SC的中点M.

(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.

设M(0,a,b)(a>0,b>0),

则,,

由题得,

解之个方程组得a=1,b=1即M(0,1,1)

所以M是侧棱SC的中点.

(I)证法三:设,

故,

即,

解得λ=1,所以M是侧棱SC的中点.

(Ⅱ)由(Ⅰ)得,

又,,

设分别是平面SAM、MAB的法向量,

则且,

即且

分别令得z1=1,y1=1,y2=0,z2=2,

即,

二面角S﹣AM﹣B的大小.

 

19.(12分)(2009•全国卷Ⅰ)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互,已知前2局中,甲、乙各胜1局.

(I)求甲获得这次比赛胜利的概率;

(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.

【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互,根据相互事件的概率公式得到结果.

(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互,得到变量的分布列,求出期望.

【解答】解:记Ai表示事件:第i局甲获胜,(i=3、4、5)

Bi表示第j局乙获胜,j=3、4

(1)记B表示事件:甲获得这次比赛的胜利,

∵前2局中,甲、乙各胜1局,

∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,

∴B=A3A4+B3A4A5+A3B4A5

由于各局比赛结果相互,

∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)

=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6

=0.8

(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3

由于各局相互,得到ξ的分布列

P(ξ=2)=P(A3A4+B3B4)=0.52

P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48

∴Eξ=2×0.52+3×0.48=2.48.

 

20.(12分)(2009•全国卷Ⅰ)在数列{an}中,a1=1,an+1=(1+)an+.

(1)设bn=,求数列{bn}的通项公式;

(2)求数列{an}的前n项和Sn.

【分析】(1)由已知得=+,即bn+1=bn+,由此能够推导出所求的通项公式.

(2)由题设知an=2n﹣,故Sn=(2+4+…+2n)﹣(1++++…+),设Tn=1++++…+,由错位相减法能求出Tn=4﹣.从而导出数列{an}的前n项和Sn.

【解答】解:(1)由已知得b1=a1=1,且=+,

即bn+1=bn+,从而b2=b1+,

b3=b2+,

bn=bn﹣1+(n≥2).

于是bn=b1+++…+=2﹣(n≥2).

又b1=1,

故所求的通项公式为bn=2﹣.

(2)由(1)知an=2n﹣,

故Sn=(2+4+…+2n)﹣(1++++…+),

设Tn=1++++…+,①

Tn=+++…++,②

①﹣②得,

Tn=1++++…+﹣

=﹣=2﹣﹣,

∴Tn=4﹣.

∴Sn=n(n+1)+﹣4.

 

21.(12分)(2009•全国卷Ⅰ)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.

(Ⅰ)求r的取值范围;

(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.

【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.

(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.

【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,

消去y2,整理得x2﹣7x+16﹣r2=0(1)

抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:

方程(1)有两个不相等的正根

即.

解这个方程组得,.

(II)设四个交点的坐标分别为

、、、.

则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),

解得点P的坐标为(,0),

则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,

令,

则S2=(7+2t)2(7﹣2t)下面求S2的最大值.

由三次均值有:

当且仅当7+2t=14﹣4t,即时取最大值.

经检验此时满足题意.

故所求的点P的坐标为.

 

22.(12分)(2009•全国卷Ⅰ)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].

(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;

(2)证明:.

【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;

(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c的范围求出f(x2)的范围即可.

【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)

依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]

等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.

由此得b,c满足的约束条件为(4分)

满足这些条件的点(b,c)的区域为图中阴影部分.(6分)

(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,

则,

故.(8分)

由于x2∈[1,2],而由(Ⅰ)知c≤0,

故.

又由(Ⅰ)知﹣2≤c≤0,(10分)

所以.

 

文档

2009年全国统一高考数学试卷(理科)(全国卷一)及答案

2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个2.(5分)已知=2+i,则复数z=()A.﹣1+3iB.1﹣3iC.3+iD.3﹣i3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知双曲线﹣
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top