最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

电气设备知识

来源:动视网 责编:小OO 时间:2025-09-24 17:15:50
文档

电气设备知识

继电保护继电保护protectiverelay,powersystemprotection研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。微机继电保护测试仪随
推荐度:
导读继电保护继电保护protectiverelay,powersystemprotection研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。微机继电保护测试仪随
继电保护

  继电保护

  protective relay,power system protection

  研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。

  微机继电保护测试仪随着科学技术的不断发展,微机继电保护测试仪已广泛运用于线路保护,主变差动保护,励磁控制等各个领域,变电站综合自动化已成为主流。

  最早的继电保护装置是熔断器。以后出现了作用于断路器的电磁型继电保护装置、电子型静态继电器以至应用计算机的数字式继电保护。随着电子技术、计算机技术、通信技术的飞速发展,人工智能技术如人工神经网络、遗传算法、进化规模、模糊逻辑等相继在继电保护领域的研究应用。

  继电保护装置必须具备以下4项基本性能:①灵敏性。反映故障的能力,通常以灵敏系数表示。②可靠性。在该动作时,不发生拒动作。③快速性。能以最短时限将故障或异常消除。④选择性。在可能的最小区间切除故障,保证最大限度地向无故障部分继续供电。选择继电保护方案时,除设置需满足以上4 项基本性能外,还应注意其经济性。即不仅考虑保护装置的投资和运行维护费,还必须考虑因装置不完善而发生拒动或误动对国民经济和社会生活造成的损失。

  随着电力系统容量日益增大,范围越来越广,仅设置系统各元件的继电保护装置,远不能防止发生全电力系统长期大面积停电的严重事故。为此必须从电力系统全局出发,研究故障元件被相应继电保护装置的动作切除后,系统将呈现何种工况,系统失去稳定时将出现何种特征,如何尽快恢复其正常运行等。系统保护的任务就是当大电力系统正常运行被破坏时,尽可能将其影响范围到最小,负荷停电时间减到最短。此外,机、炉、电任一部分的故障均影响电能的安全生产,特别是大机组和大电力系统的相互影响和协调正成为电能安全生产的重大课题。因此,系统的继电保护和安全自动装置的配置方案应考虑机、炉等设备的承变能力,机、炉设备的设计制造也应充分考虑电力系统安全经济运行的实际需要。为了巨型发电机组的安全,不仅应有完善的继电保护,还应研究、推广故障预测技术。 

  国外知名品牌有ABB\\GE\\SWEL\\SEL\西门子\阿海珐\施耐德等,国内知名品牌有南瑞\南自\四方\许继等

继电保护装置

目录[隐藏]

继电保护装置的简介 

继电保护装置的构成 

继电保护装置的任务 

继电保护装置的基本要求 

继电保护装置的基本原理 

常用继电保护装置的类型 

   

[编辑本段]

继电保护装置的简介

  当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备。实现这种自动化措施的成套设备,一般通称为继电保护装置。 

[编辑本段]

继电保护装置的构成

  1.测量比较元件

  2.逻辑判断元件

  3.执行输出元件 

[编辑本段]

继电保护装置的任务

  ①、监视电力系统的正常运行,当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。当系统和设备发生的故障足以损坏设备或危及电网安全时,继电保护装置能最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。(如:单相接地、变压器轻、重瓦斯信号、变压器温升过高等)。

  ②、反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同发出信号,提示值班员迅速采取措施,使之尽快恢复正常,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。

  ③、实现电力系统的自动化和远程操作,以及工业生产的自动控制。如:自动重合闸、备用电源自动投入、遥控、遥测等。 

[编辑本段]

继电保护装置的基本要求

  继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一。

  A、动作选择性---指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护来切除故障。上、下级电网(包括同级)继电保护之间的整定,应遵循逐级配合的原则,以保证电网发生故障时有选择性地切除故障。切断系统中的故障部分,而其它非故障部分仍然继续供电。

  B、动作速动性---指保护装置应尽快切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用设备自动投入的效果。

  C、动作灵敏性---指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数(规程中有具体规定)。通过继电保护的整定值来实现。整定值的校验一般一年进行一次。

  D、动作可靠性---指继电保护装置在保护范围内该动作时应可靠动作,在正常运行状态时,不该动作时应可靠不动作。任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行,可靠性是对继电保护装置性能的最根本的要求。

  说明:继电保护的整定、校验应由上一级供电部门进行。(收费) 

[编辑本段]

继电保护装置的基本原理

  继电保护主要是利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化构成继电保护动作的原理,还有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。

  ①、电力系统运行中的参数(如电流、电压、功率因数角)在正常运行和故障情况时是有明显区别的。继电保护装置就是利用这些参数的变化,在反映、检测的基础上来判断电力系统故障的性质和范围,进而作出相应的反应和处理(如发出警告信号或令断路器跳闸等)。

  ②、继电保护装置的原理框图分析:

  A、取样单元---它将被保护的电力系统运行中的物理量(参数)经过电气隔离并转换为继电保护装置中比较鉴别单元可以接受的信号,由一台或几台传感器如电流、电压互感器组成。

  B、比较鉴别单元---包括给定单元,由取样单元来的信号与给定信号比较,以便下一级处理单元发出何种信号。(正常状态、异常状态或故障状态)比较鉴别单元可由4只电流继电器组成,二只为速断保护,另二只为过电流保护。电流继电器的整定值即为给定单元,电流继电器的电流线圈则接收取样单元(电流互感器)来的电流信号,当电流信号达到电流整定值时,电流继电器动作,通过其接点向下一级处理单元发出使断路器最终掉闸的信号;若电流信号小于整定值,则电流继电器不动作,传向下级单元的信号也不动作。鉴别比较信号“速断”、“过电流”的信息传送到下一单元处理。

  C、处理单元---接受比较鉴别单元来的信号,按比较鉴别单元的要求进行处理,根据比较环节输出量的大小、性质、组合方式出现的先后顺序,来确定保护装置是否应该动作;由时间继电器、中间继电器等构成。电流保护:速断---中间继电器动作,过电流——时间继电器动作。(延时过程)

  D、执行单元---故障的处理通过执行单元来实施。执行单元一般分两类:一类是声、光信号继电器;(如电笛、电铃、闪光信号灯等)另一类为断路器的操作机构的分闸线圈,使断路器分闸。

  E、控制及操作电源---继电保护装置要求有自己的交流或直流电源,而且电源功率也因所控制设备的多少而增减;交流电压一般为220伏,功率1KVA以上。 

[编辑本段]

常用继电保护装置的类型

  ①、电流保护:(按照保护的整定原则,保护范围及原理特点)

  A、过电流保护---是按照躲过被保护设备或线路中可能出现的最大负荷电流来整定的。如大电机启动电流(短时)和穿越性短路电流之类的非故障性电流,以确保设备和线路的正常运行。为使上、下级过电流保护能获得选择性,在时限上设有一个相应的级差。

  B、电流速断保护---是按照被保护设备或线路末端可能出现的最大短路电流或变压器二次侧发生三相短路电流而整定的。速断保护动作,理论上电流速断保护没有时限。即以零秒及以下时限动作来切断断路器的。

  过电流保护和电流速断保护常配合使用,以作为设备或线路的主保护和相邻线路的备用保护。

  C、定时限过电流保护---在正常运行中,被保护线路上流过最大负荷电流时,电流继电器不应动作,而本级线路上发生故障时,电流继电器应可靠动作;定时限过电流保护由电流继电器、时间继电器和信号继电器三元件组成(电流互感器二次侧的电流继电器测量电流大小→时间继电器设定动作时间→信号继电器发出动作信号);定时限过电流保护的动作时间与短路电流的大小无关,动作时间是恒定的。(人为设定)

  D、反时限过电流保护---继电保护的动作时间与短路电流的大小成反比,即短路电流越大,继电保护的动作时间越短,短路电流越小,继电保护的动作时间越长。在10KV系统中常用感应型过电流继电器。(GL-型)

  E、无时限电流速断---不能保护线路全长,它只能保护线路的一部分,系统运行方式的变化,将影响电流速断的保护范围,为了保证动作的选择性,其起动电流必须按最大运行方式(即通过本线路的电流为最大的运行方式)来整定,但这样对其它运行方式的保护范围就缩短了,规程要求最小保护范围不应小于线路全长的15%。另外,被保护线路的长短也影响速断保护的特性,当线路较长时,保护范围就较大,而且受系统运行方式的影响较小,反之,线路较短时,所受影响就较大,保护范围甚至会缩短为零。

  ②、电压保护:(按照系统电压发生异常或故障时的变化而动作的继电保护)

  A、过电压保护---防止电压升高可能导致电气设备损坏而装设的。(雷击、高电位侵入、事故过电压、操作过电压等)10KV开闭所端头、变压器高压侧装设避雷器主要用来保护开关设备、变压器;变压器低压侧装设避雷器是用来防止雷电波由低压侧侵入而击穿变压器绝缘而设的。

  B、欠电压保护---防止电压突然降低致使电气设备的正常运行受损而设的。

  C、零序电压保护---为防止变压器一相绝缘破坏造成单相接地故障的继电保护。主要用于三相三线制中性点绝缘(不接地)的电力系统中。零序电流互感器的一次侧为被保护线路(如电缆三根相线),铁芯套在电缆上,二次绕组接至电流继电器;电缆相线必须对地绝缘,电缆头的接地线也必须穿过零序电流互感器;原理:正常运行及相间短路时,一次侧零序电流为零(相量和),二次侧内有很小的不平衡电流。当线路发生单相接地时,接地零序电流反映到二次侧,并流入电流继电器,当达到或超过整定值时,动作并发出信号。(变压器零序电流互感器串接於零线端子出线铜排)

  ③、瓦斯保护:油浸式变压器内部发生故障时,短路电流所产生的电弧使变压器油和其它绝缘物产生分解,并产生气体(瓦斯),利用气体压力或冲力使气体继电器动作。故障性质可分为轻瓦斯和重瓦斯,当故障严重时(重瓦斯)气体继电器触点动作,使断路器跳闸并发出报警信号。轻瓦斯动作信号一般只有信号报警而不发出跳闸动作。

  变压器初次投入、长途运输、加油、换油等原因,油中可能混入气体,积聚在气体继电器的上部(玻璃窗口能看到油位下降,说明有气体),遇到此类情况可利用瓦斯继电器顶部的放气阀(螺丝拧开)放气,直至瓦斯继电器内充满油。考虑安全,最好在变压器停电时进行放气。容量在800KVA及以上的变压器应装设瓦斯保护。

  ④差动保护:这是一种按照电力系统中,被保护设备发生短路故障,在保护中产生的差电流而动作的一种保护装置。常用做主变压器、发电机和并联电容器的保护装置,按其装置方式的不同可分为:

  A、横联差动保护---常用作发电机的短路保护和并联电容器的保护,一般设备的每相均为双绕组或双母线时,采用这种差动保护。

  B、纵联差动保护---一般常用作主变压器的保护,是专门保护变压器内部和外部故障的主保护 。

  ⑤高频保护:这是一种作为主系统、高压长线路的高可靠性的继电保护装置。目前我国已建成的多条500KV的超高压输电线路就要求使用这种可行性、选择性、灵敏性和动作迅速的保护装置。高频保护分为相差高频保护;方向高频保护。

  相差高频保护的基本原理是比较两端电流的相位的保护。规定电流方向由母线流向线路为正,从线路流向母线为负。就是说,当线路内部故障时,两侧电流同相位而外部故障时,两侧电流相位差180度。方向高频保护的基本工作原理是,以比较被保护线路两端的功率方向,来判别输电线路的内部或外部故障的一种保护装置。

  ⑥距离保护:这种继电保护也是主系统的高可靠性、高灵敏度的继电保护,又称为阻抗保护,这种保护是按照长线路 故障点不同的阻抗值而整定的。

  ⑦平衡保护:这是一种作为高压并联电容器的保护装置。继电保护有较高的灵敏度,对于采用双星形接线的并联电容器组,采用这种保护较为适宜。它是根据并联电容器发生故障时产生的不平衡电流而动作的一种保护装置。

  ⑧负序及零序保护:这是作为三相电力系统中发生不对称短路故障和接地故障时的主要保护装置。

  ⑨方向保护:这是一种具有方向性的继电保护。对于环形电网或双回线供电的系统,某部分线路发生故障时,而故障电流的方向符合继电保护整定的电流方向,则保护装置可靠地动作,切除故障点。

差动保护

  差动保护是变压器的主保护,是按循环电流原理装设的。 

  主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 

  在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同极性端都朝向母线侧,则将同极性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流之差,也就是说差动继电器是接在差动回路的。 

  从理论上讲,正常运行及外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡电流Iumb流过,此时流过继电器的电流IK为 Ik=I1-I2=Iumb 

  要求不平衡电流应尽量的小,以确保继电器不会误动。 

  当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即 

  Ik=I1+I2=Iumb 

  能使继电器可靠动作。 

  变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。

  差动保护是反映被保护元件(或区域)两侧电流差而动作的保护装置。差动保护是保护变压器的内部短路故障,电流互感器安装在变压器的两侧,在正常负荷情况或外部发生短路时,流入差动继电器的电流为不平衡电流,在适当选择好两侧电流互感器的变压比和接线方式的条件下,该不平衡电流值很小,并小于差动保护的动作电流,故保护不动作;在变压器内部发生短路时,流入继电器的电流大于差动保护的动作电流,差动保护动作于跳闸。

  由于变压器一、二次电流、电压大小不同,相位不同,电流互感器特性差异,电源侧有励磁电流,都将造成不平衡电流流过继电器,必须采用相应措施消除不平衡电流的影响。

  (1)减小稳态情况下的不平衡电流

  变压器差动保护各侧用的电流互感器,选用变压器差动保护专用的D级电流互感器;当通过外部最大稳态短路电流时,差动保护回路的二次负荷要能满足10%误差的要求。

  (2)减小电流互感器的二次负荷

  这实际上相当于减小二次侧的端电压,相应地减少电流互感器的励磁电流。减小二次负荷的常用办法有:减小控制电缆的电阻(适当增大导线截面,尽量缩短控制电缆长度);采用弱电控制用的电流互感器(二次额定电流为lA)等。

  (3)采用带小气隙的电流互感器

  这种电流互感器铁芯的剩磁较小,在一次侧电流较大的情况下,电流互感器不容易饱和。因而励磁电流较小,有利于减小不平衡电流。同时也改善了电流互感器的暂态特性。

什么是差动保护详解  

什么是差动保护? 

差动保护是输入的两端CT电流矢量差,当达到设定的动作值时启动动作元件。保护范围在输入的两端CT之间的设备(可以是线路,发电机,电动机,变压器等电气设备) 

电流差动保护是继电保护中的一种保护。 

什么是差动保护? 

比较两侧差电流的就是。 

差动电流就是指变压器两端的电流差。差动保护就是故障时变压器高低压侧的电流差驱动继电保护设备动作。 

变压器的差动保护是利用比较被保护元件两端电流的幅值和相位原理构成的。它在发电机、变压器、母线及大容量电动机上获得广泛应用。被保护元件始端和末端的电流互感器二次回路采用环流法接线。在正常运行和外部发生短路故障时(即穿越性短路故障时,流过继电器的电流为零,保护不动作。当保护元件内部故障时,继电器中有很大的电流流过,继电器将很灵敏的动作,起到保护作用。 

什么是差动保护? 

从能量的角度考虑,电力故障就是电能释放转化为热和光等其它能量的过程,从而在故障点两端测得的(相同电压下或变换为同一电压)电流大小和相位必然是不一样的,测得有电流差即有电能释放,即表明有故障,保护就应动作。“差动”就是有差即动! 

什么是差动继电器? 

    作为保护装置,差动继电器由位于系统中两个不同位置的电流互感器提供反馈信息。差动继电器对电流进行比较,如果存在不同则表示受保护区域内有故障存在。这些装置常被用于保护发电机或变压器的线圈。 

什么是差动保护和电流速断保护和零序电流保护   

差动保护的性能非常好,可以瞬时切除全线范围的故障,一般只用于元件保护,如变压器和发电机等。其原理是比较元件两侧的电流大小和方向。 

电流速断保护反映相间短路故障,在10~35KV配电线路和小容量变压器上应用广泛。其动作电流按短路电流整定,数值大,只有线路始端故障时的短路电流才会大于其动作电流,即速断保护才会动作,所以其保护范围只限于线路前一部分。 

零序电流保护反应接地短路故障,只有接地时才出现零序电流,引起该保护动作。当然要构成该保护,需要用零序电流滤过器(电缆的话要用零序电流互感器)来获得零序电流。

差动保护

学习资料   2008-06-14 16:35   阅读184   评论0   

字号: 大大  中中  小小 

   变压器差动保护是变压器的主保护,一般较大型变压器都装有差动保护.差动保护主要保护变压器内部线圈匝间短路,它的动作原理是利用变压器高低压两侧的两组差动保护专用电流互干器完成.差动保护的保护范围就是两组互感器之间的部分.

从能量的角度考虑,电力故障就是电能释放转化为热和光等其它能量的过程,从而在故障点两端测得的(相同电压下或变换为同一电压)电流大小和相位必然是不一样的,测得有电流差即有电能释放,即表明有故障,保护就应动作。“差动”就是有差即动!

变压器的主保护是差动保护还是瓦斯保护?

差动保护和瓦斯保护共同组成变压器的主保护。 

差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。 

瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 

由上可以看出,差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保

变压器差动保护是变压器的主保护,一般较大型变压器都装有差动保护.差动保护主要保护变压器内部线圈匝间短路,它的动作原理是利用变压器高低压两侧的两组差动保护专用电流互干器完成.差动保护的保护范围就是两组互感器之间的部分.

变压器的差动保护分为纵联差动和横联差动两种形式.纵联差动保护用于单回路,横联差动保护用于双回路. 

主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,其保护区在变压器一,二侧所装电流互感器之间. 

它是利用保护区内发生短路故障时变压器两侧电流在差动回路中引起的不平衡电力而动作的一种保护.

主变差动保护跳闸的处理;

查看开关位置显示及其电流表,确认主变跳闸,报调度,汇报初步现象。查看并记录光字牌,确认是主变差动保护。停止站内的所有工作票,观察其它剩下的主变有无过负荷,油温有无过高,派人到现场把其他主变的冷却器全部投入,加强对主变的巡视和监视信号屏的主变负荷情况和油温。主变过负荷,可向调度汇报,要求压负荷。如果是#1主变跳闸,则应该检查站用变是否自投成功,站用电是否正常,充电机是否正常工作。还应该合上其它三台主变的其中一台的变高和变中中性点接地刀闸。 

在保证站内的其它设备不受事故影响其正常运行后,将主变及其三侧开关转换为检修,进行下列检查: 

1)主变套管有无破裂放电现象; 

2)在主变差动保护区内有无短路或放电现象; 

3)差动保护接线、整定有无错误、电流互感器二次回路是否开路,旁路代主变开关时有无切换电流互感器二次回路; 

4)向调度了解在跳闸的同时系统有无短路故障; 

5)查看瓦斯继电器内有无气体,主变油位、油色、防爆装置有无异常。 

检查结果确认差动保护动作正确,但不是变压器内部故障引起,而是差动范围内变压器外的短路故障引起,若故障点在高压侧,则在故障处理完毕,检查变压器无异常后,经调度同意可将主变重新投入运行;若故障点在中低压侧,则应进行绕组变形测试、取油样化验、测直流电阻、绝缘电阻等,确认变压器正常,且故障处理完毕后,还必须经过总工程师同意才能将变压器重新投入运行; 

检查结果确认是差动保护误动作,在其它保护(重瓦斯、复合过流)正常的情况下,经调度员同意可将差动保护退出,恢复变压器运行。

我认为: 1.检查有无CT断线。CT断线也会在差动回路中产生差流,引起误动。 2.检查CT接线端子是否有松动现象,虚接会造成电阻增大,不平衡电流增大。 3.假如因需要增加了负荷,应考虑原来的定值是否调大些。 4.检查CT互感器同名端的极性。 以上现象都会造成差动误动。望笑纳! 这是我现场服务所得。

变压器差动保护跳闸后,应做如下检查和处理: 

1.检查变压器本体有无异常,检查差动保护范围内的瓷瓶是否有闪络、损坏,引线是否有短路。 

2.如果变压器差动保护范围内的设备无明显故障,应检查继电保护及二次回路是否有故障,直流回路是否有两点接地。 

3.经检查以上无异常时,应在切除负荷后立即试送一次,试送后又跳闸,不得再送。 

4.如果是因继电器或二次回路故障,直流两点接地造成的误动,应将差动保护退出运行,将变压器送电后,再处理二次回路故障及直流接地。 

5.差动保护及重瓦斯保护同时动作使变压器跳闸时,不经内部检查和试验,不得将变压器投入运行。

为什么高压进线只有ABC三相,而没有零相,若有一相接地会出现什么情况 ,怎么解决?什么是小电流接地系统?什么又是大电流接地系统?电力变压器为什么要有重瓦斯动作,和温度过高动作?

我国现在的10KV 110KV 220KV 500KV (国网已经有1000KV)高压输电线路都是没有零线的,因为这些电压等级都是不可以直接被设备(少数超高压设备除外)所接受的。而我们平时用电最多的是3相4线制(TN—C系统),3根火线+1零线。而零线的作用是:1.中性线(N线),和火线一起接成相电压。2.充当某些运行设备的中性点接地(工作接地)。3.和设备外壳相接充当保护(P线)。而这些在10KV以上电压等级是不需要的,110KV以上的输电线路上方有2条架空零线(或称架空避雷线、架空地线),其作用是起避雷作用(防止雷电波)。所以日常见到的高压进线没零线。 

楼主问到1相接地的问题,高压输电线都是需要保护的(禁止在无保护的条件下运行),110KV一般有一套保护,220KV以上则需要2套原理不同、且来自不同厂家的保护,运用比较广泛的是光纤纵差和高频保护。当发生一相接地的时候会发生跳闸,因为线路都有重合闸(分单重、3重、综重),在判定为永久性故障后不进行重合。所以:短路——重合——跳闸。 

关于大、小电流接地系统的问题,大电流接地系统是指中性点直接接地系统,像我们的3相4线制就属于,因为在发生故障的时候接地电流会比较大。小电流接地系统包括:中性点不接地系统、中性点经消弧线圈接地系统、中性点经大电阻接地系统。发生故障的时候接地电流比较小。 

电力的变压器为什么需要装有瓦斯保护?在电网的变压器中,差动保护和瓦斯保护一起构成变压器的主保护,差动保护是用首末两端电流的对比判断故障然后动作的,保护的是变压器的绕组、套管、到CT侧,差动保护属于电气量保护。瓦斯保护是属于非电气量的保护,装在油箱和油枕之间,分过气流和过油流,如果变压器内部发生短路,那么短路电流会分解变压器油而产生气体,让瓦斯继电器发出告警信号(轻瓦斯保护),短路严重的时候,气温很高,会让油面上升,冲到瓦斯继电器的动作位置,发生跳闸信号(重瓦斯保护)。由于瓦斯保护可以保护到差动保护所保护不到的位置——铁心。所以瓦斯和差动一起构成变压器的主保护。 

以上内容是针对楼主的问题,尽己能力详细作出解答,如果有疑问继续提问,大家在讨论中进步^-^

1、高压线三相是火线,接到变电站后,变电站的地线就直接接到大地上再连给用户(零相就是大地) 

2、若有一相接地会出现短路,线路中有短路保护系统,自动跳砸。 

3、中性点直接接地的系统,大电流接地系统。中性点不直接接地的系统,叫小电流接地系统。 

4、瓦斯动作,和温度过高动作可提醒变压器油。油过少变压器发热,则会瓦斯动作,变压器短路或环境温度高油受热胀,会温度过高动作。

失压保护

  所谓失压和欠压保护

  就是当电源停电或者由于某种原因电源电压降低过多(欠压)时,保护装置能使电动机自动从电源上切除。因为当失压或欠压时,接触器线圈电流将消失或减小,失去电磁力或电磁力不足以吸住动铁心,因而能断开主触头 ,切断电源。失压保护的好处是,当电源电压恢复时,如不重新按下启动按钮,电动机就不会自行转动(因自锁触头也是断开的) ,避免了发生事故。如果不是采用继电接触控制,而是直接用闸刀开关进行控制,由于在停电时往往忽视拉开电源开关,电源电压恢复时,电动机就会自行启动,会发事故。欠压保护的好处是,可以保证异步电动机不在电压过低的情况下运行。

零序保护

  在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保护接地短路的继电保护装置统称为零序保护。 

  零序电流保护在运行中需注意以下问题: (1)当电流回路断线时,可能造成保护误动作。这是一般较灵敏的保护的共同弱点,需要在运行中注意防止。就断线机率而言,它比距离保护电压回路断线的机率要小得多。如果确有必要,还可以利用相邻电流互感器零序电流闭锁的方法防止这种误动作。 (2)当电力系统出现不对称运行时,也要出现零序电流,例如变压器三相参数不同所引起的不对称运行,单相重合闸过程中的两相运行,三相重合闸和手动合闸时的三相断路器不同期,母线倒闸操作时断路器与隔离开关并联过程或断路器正常环并运行情况下,由于隔离开关或断路器接触电阻三相不一致而出现零序环流,以及空投变压器时产生的不平衡励磁涌流,特别是在空投变压器所在母线有中性点接地变压器在运行中的情况下,可能出现较长时间的不平衡励磁涌流和直流分量等等,都可能使零序电流保护启动。 (3)地理位置靠近的平行线路,当其中一条线路故障时,可能引起另一条线路出现感应零序电流,造成反方向侧零序方向继电器误动作。如确有此可能时,可以改用负序方向继电器,来防止上述方向继电器误判断。 (4)由于零序方向继电器交流回路平时没有零序电流和零序电压,回路断线不易被发现;当继电器零序电压取自电压互感器开口三角侧时,也不易用较直观的模拟方法检查其方向的正确性,因此较容易因交流回路有问题而使得在电网故障时造成保护拒绝动作和误动作。

过流保护

  很多电子设备都有个额定电流,不允许超过额定电流,不然会烧坏设备。所以有些设备就做了电流保护模块。当电流超过冒设定电流时候,设备自动断电,以保护设备。如主板usb一般有usb过流保护,保护主板不被烧坏。

  PTC效应

  说一种材料具有PTC (Positive Temperature Coefficient) 效应, 即正温度系数效应,仅指此材料的电阻会随温度的升高而增加。如大多数金属材料都具有PTC效应。在这些材料中,PTC效应表现为电阻随温度增加而线性增加,这就是通常所说的线性PTC效应。

  非线性PTC效应

  经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性PTC效应。相当多种类型的导电聚合体会呈现出这种效应,如高分子PTC热敏电阻。这些导电聚合体对于制造过电流保护装置来说非常有用。

  初始电阻 Rini 

  在被安装到电路中之前,环境温度为25℃的条件下测试,KT系列的高分子PTC热敏电阻的阻值。

  R1max 

  在室温条件下,KT系列高分子PTC热敏电阻动作或回流焊接安装到电路板中一小时后测得的最大电阻值。

  最小电阻(Rmin)/最大电阻(Rmax)

  在指定环境温度下,例如:25℃,安装到电路之前特定型号的KT系列高分子热敏电阻的阻值会在规定的一个范围内,即在最小值(Rmin)和最大值(Rmax)之间。此值被列在规格书中的电阻栏里。

  维持电流 Ihold

  维持电流是KT系列高分子PTC热敏电阻保持不动作情况下可以通过的最大电流。在限定环境条件下,装置可保持无限长的时间,而不会从低阻状态转变至高阻状态。

  动作电流 Itrip 

  在限定环境条件下,使KT系列高分子热敏电阻在限定的时间内动作的最小稳态电流。

  最大电流 Imax (耐流值)

  在限定状态下, KT系列高分子PTC热敏电阻安全动作的最大动作电流,即热敏电阻的耐流值。超过此值,热敏电阻有可能损坏,不能恢复。此值被列在规格书中的耐流值一栏里。 

  泄漏电流Ires

  KT系列高分子PTC热敏电阻锁定在其高阻状态时,通过热敏电阻的电流。

  最大工作电流/正常操作电流 

  在正常的操作条件下,流过电路的最大电流。在电路的最大环境工作温度下,用来保护电路的KT系列高分子PTC热敏电阻的维持电流一般来说比工作电流大。

  动作 

  KT系列高分子PTC热敏电阻在过电流发生或环境温度增加时由低阻值向高阻值转变的过程。

  动作时间 

  过电流发生开始至热敏电阻动作完成所需的时间。对任何特定的KT系列高分子PTC热敏电阻而言,流经电路的电流越大,或工作的环境温度越高,其动作时间越短。

  动作循环

  在特定条件下,KT系列高分子PTC热敏电阻动作至恢复的一个周期,称为一个动作循环。

  动作循环次数 

  指某一特定型号的KT系列高分子PTC热敏电阻在正常动作以及经由特定方法定义的非正常动作条件下,所能承受的最大的动作循环次数。

  Vmax 最大电压(耐压值)

  在限定条件下, KT系列高分子PTC热敏电阻动作时,能安全承受的最高电压。即热敏电阻的耐压值。超过此值,热敏电阻有可能被击穿,不能恢复。此值通常被列在规格书中的耐压值一栏里。

  最大工作电压

  在正常动作状态下,跨过KT系列高分子PTC热敏电阻两端的最大电压。在许多电路中,相当于电路中电源的电压。

  导电聚合体

  在此指由导电粒子(炭黑,碳纤维,金属粉末,金属氧化物等)填充绝缘的高分子材料(聚烯烃,环氧树脂等)而制得的导电复合材料。

  环境温度

  在热敏电阻或者一个联有热敏电阻元件的电路周围静止空气的温度。

  工作温度范围 

  元件可以安全工作的环境温度范围。

  最大工作环境温度

  预期元件可以安全工作的最高环境温度。

  功率耗损

  KT系列高分子PTC热敏电阻动作后所消耗的功率,通过计算流过热敏电阻的泄漏电流和跨过热敏电阻的电压的乘积得到。

  高温,高湿老化

  在室温下, 测量KT系列高分子PTC热敏电阻在较长时间(如150小时)处于较高温度(如85℃)及高湿度(如85% 湿度)状态前后的阻值的变化。

  被动老化测试

  室温下,测量KT系列高分子PTC热敏电阻长时间(如1000小时)处于较高温度(如70℃或85℃)状态前后的阻值变化。

  冷热打击测试 

  在室温下,KT系列高分子PTC热敏电阻的阻值在温度循环前后的变化的测试结果。(例如,在-55℃及+125℃之间循环10次)

速断保护

  速断保护:为了克服过电流保护在靠近电源端的保护装置动作时限长,采用提高整定值,以动作范围的办法,这样就不必增加时限可以瞬时动作,其动作是按躲过最大运行方式下短路电流来考虑的,所以不能保护线路全长,它只能保护线路的一部分,系统运行方式的变化影响电流速断的保护范围。

保护接地

  保护接地 :

  bǎo hù jiē dì 

  使电工设备的金属外壳接地的措施。可防止在绝缘损坏或意外情况下金属外壳带电时强电流通过人体,以保证人身安全。 

  所谓保护接地就是将正常情况下不带电,而在绝缘材料损坏后或其他情况下可能带电的电器金属部分(即与带电部分相绝缘的金属结构部分)用导线与接地体可靠连接起来的一种保护接线方式。接地保护一般用于配电变压器中性点不直接接地(三相三线制)的供电系统中,用以保证当电气设备因绝缘损坏而漏电时产生的对地电压不超过安全范围。如果家用电器未采用接地保护,当某一部分的绝缘损坏或某一相线碰及外壳时,家用电器的外壳将带电,人体万一触及到该绝缘损坏的电器设备外壳(构架)时,就会有触电的危险。相反,若将电器设备做了接地保护,单相接地短路电流就会沿接地装置和人体这两条并联支路分别流过。一般地说,人体的电阻大于1000欧,接地体的电阻按规定不能大于4欧,所以流经人体的电流就很小,而流经接地装置的电流很大。这样就减小了电器设备漏电后人体触电的危险。

  保护接地 

  实践证明,采用保护接地是当前我国低压电力网中的一种行之有效的安全保护措施。由于保护接地又分为接地保护和接零保护,两种不同的保护方式使用的客观环境又不同,因此如果选择使用不当,不仅会影响客户使用的保护性能,还会影响电网的供电可靠性。那么作为公用配电网络中的电力客户,如何才能正确合理地选择和使用保护接地呢? 

  一是要认识和了解接地保护与接零保护,掌握这两种保护方式的不同点和使用范围 

  接地保护与接零保护统称保护接地,是为了防止人身触电事故、保证电气设备正常运行所采取的一项重要技术措施。这两种保护的不同点主要表现在三个方面:一是保护原理不同。接地保护的基本原理是漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。二是适用范围不同。根据负荷分布、负荷密度和负荷性质等相关因素,《农村低压电力技术规程》将上述两种电力网的运行系统的使用范围进行了划分。TT系统通常适用于农村公用低压电力网,该系统属于保护接地中的接地保护方式;TN系统(TN系统又可分为TN-C、TN-C-S、TN-S三种)主要适用于城镇公用低压电力网和厂矿企业等电力客户的专用低压电力网,该系统属于保护接地中的接零保护方式。当前我国现行的低压公用配电网络,通常采用的是TT或TN-C系统,实行单相、三相混合供电方式。即三相四线制380/220V配电,同时向照明负载和动力负载供电。三是线路结构不同。接地保护系统只有相线和中性线,三相动力负荷可以不需要中性线,只要确保设备良好接地就行了,系统中的中性线除电源中性点接地外,不得再有接地连接;接零保护系统要求无论什么情况,都必须确保保护中性线的存在,必要时还可以将保护中性线与接零保护线分开架设,同时系统中的保护中性线必须具有多处重复接地。 

  二是要根据客户所在的供电系统,正确选择接地保护和接零保护方式 

  电力客户究竟应该采取何种保护方式,首先必须取决于其所在的供电系统采取的是是何种配电系统。如果客户所在的公用配电网络是TT系统,客户应该统一采取接地保护;如果客户所在的公用配电网络是TN-C系统,则应统一采取接零保护。 

  TT系统和TN-C系统是两个具有各自特性的系统,虽然两个系统都可以为客户提供220/380V的单、三相混合电源,但它们之间不仅不能相互替代,同时在保护措施上的要求又是截然的不同。这是因为,同一配电系统里,如果两种保护方式同时存在的话,采取接地保护的设备一旦发生相线碰壳故障,零线的对地电压将会升高到相电压的一半或更高,这时接零保护(因设备的金属外壳与零线直接连接)的所有设备上便会带上同样高的电位,使的设备外壳等金属部分呈现较高的对地电压,从而危及使用人员的安全。因此,同一配电系统只能采用同一种保护方式,两种保护方式不得混用。其次是客户必须懂得什么叫保护接地,正确区分接地与接零保护的不同点。保护接地是指家用电器、电力设备等由于绝缘的损坏可能使得其金属外壳带电,为了防止这种电压危及人身安全而设置的接地称为保护接地。将金属外壳用保护接地线(PEE)与接地极直接连接的叫接地保护;当将金属外壳用保护线(PE)与保护中性线(PEN)相连接的则称之为接零保护。 

  三是要依据两种保护方式的不同设置要求,规范设计、施工工艺标准 

  规范客户受电端建筑物内的配电线路设计、施工工艺标准和要求,通过对新建或改造的客户建筑物的室内配电部分,实施以局部三相五线制或单相三线制,取代TT或TN-C系统中的三相四线制或单相二线制配电模式,可以有效实现客户端的保护接地。所谓“局部三相五线制或单相三线制”就是在低压线路接入客户后,客户要改变原来的传统配线模式,在原来的三相四线制和单相二线制配线的基础上,分别各增加一条保护线接入到客户每一个需要实施接地保护电器插座的接地线端子上。为了便于维护和管理,这条保护线的室内引出和室外引入端的交汇处应装设在电源引入的配电盘上,然后再根据客户所在的配电系统,分别设置保护线的接入方法。 

  1、TT系统接地保护线(PEE)的设置要求 

  当客户所在的配电系统是TT系统时,由于该系统要求客户必须采取接地保护方式。因此,为了达到接地保护的接地电阻值的要求,客户要按照《农村低压电力技术规程》的要求,在室外埋设人工接地装置,其接地电阻应满足下式要求: 

  Re≤Ulom/Iop 

  式中:Re 接地电阻(Ω) 

  Ulom 通称电压极限(V),正常情况下可按交流有效值50V考虑 

  Iop 相邻上一级剩余电流(漏电)保护器的动作电流(A) 

  对于一般客户来讲,只要采用40×40×4×2500毫米的角钢,用机械打入的方式垂直打入地下0.6米,就能满足接地电阻的阻值要求。然后用直径≥φ8的圆钢焊接后引出地面0.6米,再用同引入的电源相线同等材质和型号的导线连接到配电盘的保护线(PEE)上。 

  2、 TN-C系统接零保护线(PE)的设置要求 

  由于该系统要求客户必须采取接零保护方式,因此需要在原三相四线制或单相两线制的基础上,另增加一条专用保护线(PE),该条保护线是由客户受电端配电盘的保护中性线(PEN)上引出,与原来的三相四线制或单相二线制一同进行配线连接。为了保证整个系统工作的安全可靠,在使用中应特别注意,保护线(PE)自从保护中性线(PEN)上引出后,在客户端就形成了中性线N和保护线(PE),使用中不能将两线再进行合并为(PEN)线。为了确保保护中性线(PEN)的重复接地的可靠性,TN-C系统主干线的首、末端,所有分支T接线杆、分支末端杆,等处均应装设重复接地线,同时三相四线制用户也应在接户线的入户支架处,(PEN)线在分为中性线(N)和保护线(PE)之前,进行重复接地。无论是保护中性线(PEN)、中性线(N)还是保护线(PE)的导线截面一律按照相线的导线型号和截面标准来选择。

  保护接地的适用范围是哪些?

  保护接地适用于不接地电网。这种电网中,凡由于绝缘破坏或其他原因而可能呈现危险电压的金属部分,除另有规定外,均应接地!

  把正常情况下不带电,而在故障情况下可能带电的电气设备外壳、构架、支架通过接地和大地接连起来叫保护接地。保护接地的作用就是将电气设备不带电的金属部分与接地体之间作良好的金属连接,降低接点的对地电压,避免人体触电危险。

漏电保护

  当被保护线路的相线直接或通过非预期负载对大地接通,而产生近似正弦波形并且其有效值是缓慢变化的剩余电流,当该电流大于一定数值时,保护器切断该线路。

过载保护

[编辑本段]

词典释义

  1.【计】 overload protection

  2.【化】 overload protection; overpower protection 

[编辑本段]

定义

  防止主电源线路因过载导致保护器过热损坏而加装的过载保护设备。

   

概述

   电气线路中允许连续通过而不至于使电线过热的电流量,称为安全载流量或安全电流。

  如导线流过的电流超过了安全载流量,就叫导线过载。一般导线最高允许工作温度为65°C。过载时,温度超过该温度,会使绝缘迅速老化甚至于线路燃烧。 

   

发生过载的主要原因

  1 

  有导线截面选择不当,实际负载已超过了导线的安全电流;

  2

  还有“小马拉大车”现象,即在线路中接入了过多的大功率设备,超过了配电线路的负载能力。 在重要的物资仓库、居住场所和公共建筑物中的照明线路,有可能引起导线或电缆长时间过载的动力线路,以及采用有延烧性护套的绝缘导线敷设在可燃或难烧建筑构件上时,都应采取过载保护线路.

欠压保护

  当被保护线路的电源电压低于一定数值时,保护器切断该线路;当电源电压恢复到正常范围时,保护器自动接通。

一次调频

  一次调频:是指由发电机组调速系统的频率特性所固有的能力,随频率变化而自动进行频率调整。其特点是频率调整速度快,但调整量随发电机组不同而不同,且调整量有限,值班调度员难以控制。

  二次调频是指当电力系统负荷或发电出力发生较大变化时,一次调频不能恢复频率至规定范围时采用的调频方式。

  二次调频分为手动调频及自动调频:

  手动调频:在调频厂,由运行人员根据系统频率的变动来调节发电机的出力,使频率保持在规定范围内,手动调频的特点是反映速度慢,在调整幅度较大时,往往不能满足频率质量的要求,同时值班人员操作频繁,劳动强度大。

  自动调频:这是现代电力系统采用的调频方式,自动调频是通过装在发电厂和调度中心的自动装置随系统频率的变化自动增减发电机的发电出力,保持系统频率在较小的范围内波动,自动调频是电力系统调度自动化的组成部分,它具有完成调频、系统间联络线交换功率控制、和经济调度等综合功能。

电力系统稳定器

  电力系统稳定器(pss)就是为抑制低频振荡而研究的一种附加励磁控制技术。它在励磁电压调节器中,引入领先于轴速度的附加信号,产生一个正阻尼转矩,去克服原励磁电压调节器中产生的负阻尼转矩作用。用于提高电力系统阻尼、解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。它抽取与此振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加力矩。

  一、电网PSS试验情况

  1.励磁控制系统滞后特性的测量

  励磁控制系统滞后特性即无补偿频率特性。因励磁控制系统滞后特性的存在,加到励磁调节器的附加信号经滞后才能产生附加力矩。测量励磁控制系统滞后特性,应测量附加力矩对PSS迭加点的滞后角度。由于附加力矩无法测量,实际上是测量机端电压对PSS迭加点的滞后角度。因为在发电机高功率因数运行时,机端电压对PSS迭加点的滞后角度近似等于附加力矩对PSS迭加点的滞后角度。

  由试验可见: 

  (1)励磁控制系统滞后特性基本分为两种:自并励系统(约-40°~90°):励磁机励磁系统(约-40°~-150°)。

  (2)同一频率角度范围,表示同一发电机励磁系统在不同的系统工况和发电机工况下有不同的滞后角度,从几度到十几度,其中也包含了测量误差。

  (3)温州电厂与台州电厂虽采用同一励磁控制系统,因转子电压反馈和调节器放大倍数不同,励磁系统滞后特性发生明显变化。

  (4)励磁调节器的PSS迭加点位置不同,励磁控制系统滞后特性也不同。

  2.有补偿频率特性的测量

  有补偿频率特性,由无补偿频率特性与PSS单元相频特性相加得到,用来反映经PSS相位补偿后的附加力矩相位。DL/T650-1998《大型汽轮发电机自并励静止励磁系统技术条件》提山,有补偿频率特性在该电力系统低频振荡区内要满足-80°~-135°的要求,此角度以机械功率方向为零度。根据试验的方便情况,可采用两种方法:(1)断开PSS信号输入端,在PSS输入端加噪声信号,测量机端电压相对PSS输入信号的相角:(2)PSS环节的相角加上励磁控制系统滞后相角。

  由试验可见:

  (1)通过调整PSS参数,可以使有补偿频率特性在较宽的频率范围内满足要求。 

  (2)ALSTHOM机组PSS低频段相位补偿特性未能满足要求。

  (3)北仑电厂1号机PSS在小于0.4Hz范围增大隔直环节时间常数,使之低频段有良好的相位补偿特性,而且提升放大倍数(0.2Hz处提高1.76倍)。

  3.PSS放大倍数和输出限幅

  PSS放大倍数都以标幺值表示。输入值按PSS信号是哪一种,取机组额定有功功率、额定转速或额定频率为基值。输出值以PSS迭加点额定机端电压为基值。当PSS迭加点与电压迭加点不一致时,要按低频振荡频率下的环节放大倍数折算额定机端电压值。因PSS中的超前滞后环节影响放大倍数,本文以1Hz下的放大倍数进行比较.

  4.PSS开环频率特性

  开环频率特性用于测量增益裕量及相角裕量,判断闭环控制系统的稳定性,判断PSS放大倍数是否适当。可在PSS输入端或PSS输出端解开闭环进行测量。

  由表5可见,除台州电厂7、8号机和北仑电厂2号机以外,开环频率特性的增益裕量及相角裕量均符合DL/T650-1998标准的要求,增益裕量大于6dB、相角裕量大于40°。

  5.负载电压给定阶跃响应

  负载电压给定阶跃响应作为为验证试验项目,可以直接观察PSS投入引起地区内与本机有关振荡模式阻尼比的提高,从表6中可见振荡频率均在1.18Hz以上。阶跃响应不能检验区域间与本机有关振荡模式阻尼比的提高。试验结果表明,以上机组PSS的作用均有效。有的机组对负载电压阶跃反映迟钝,以至难以测量,这可能是调节器的一些环节滤去了阶跃信号中的高频分量,也可能是在试验工况下系统组尼比较大。

  二、对PSS工作的几点看法

  1、关于相位补偿的频率范闹

  DL/T650-1998《大型汽轮发机自并励静止励磁系统技术条仆》提出了PSS应满足该机各振荡模式下的相位补偿要求,其振荡频率一般在0.2Hz~2.0Hz范围内。相位补偿可按分析计算得出该系统振荡模式的实际频率范围设计,也可按0.2Hz~2.0Hz频率范围设计。

  后者因频带宽,不易在全范围满足要求,如果有一定的经验,也可以经初步分析后进行现场试验整定。以上所列浙江电网PSS整定I作均为不依靠系统计算分析,仅由现场试验整定。除ALSTHOM机组PSS因没有可调整点无法扩大相位补偿的频率范围之外,其它机组在0.5Hz~1.6Hz内满足-60°~-135°有补偿频率特性的要求。这里要指出,在DL/T650—1998发布之前,采用有补偿频率特性-60°~-135°的要求:DL/T650-1998提出了有补偿频率特性-80°~-135°的要求。

  ALSTHOM机组PSS的相位补偿仅满足0.75Hz以上低频振荡范围的要求。其原因是PSS仅设计一个隔直环节,没有超前滞后环节。建议:(1)对电力系统进行小干扰稳定性分析后,判断ALSTHOM机组PSS是否需要重新设计。(2)应在供货前提供励磁系统数学模型参数,得到确认后再发货。

  现场试验整定的条件为,励磁调节器可以进行励磁系统滞后特性的测量,即可以在PSS迭加点加入测量川的噪声信号。但有些微机励磁调节器做不到。对此,DL/T650-1998柄;准中明确要求,励磁调节器应具备测量励磁控制系统滞后特性的功能。

  将PSS计算分析得到不同运行方式利事故状况下的励磁系统滞后特性,结合现场试验实测励磁系统滞后特性,从而合理而准确地整定PSS参数。

  2、关于振荡模式的分析

  通过振荡模式的分析,了解各振荡模式的振频和阻尼比。

  PSS首先应保证在大小运行方式下阻尼比均满足要求。于是要分析无PSS时大小运行方式下的阻尼比,确定必须投入PSS的电厂和机组。

  电力系统故障以后阻尼往往被削弱,所以要进行故障预测和故障后动态稳定性分析,以判断在故障情况FPSS是否仍可为系统动态稳定提供足够的正阻尼。如存在问题,需进行进一步研究。

  各振荡模式的振频应包括在PSS频带范围内。

  由于振荡模式分析需要电力系统和励磁系统的参数,需要运行状态和分析经验的积累,建议在开展分析工作的同时,不失时机地通过现场试验将大型汽轮发电机组PSS投入运”。

  通过投入试验来验证和改进分析工作,用计算分析来指导和简化PSS投入试验。

  3、关于PSS放人倍数

  PSS放大倍数可按临界放大倍数的1/3~1/5整定。浙江电网PSS试验均采用测量开环频率特性稳定裕量的方法测量调整PSS放大倍数。其原因有三个:一是测量开环频率特性稳定裕量采用加白噪声到励磁系统的方法,试验简单,且对发电机的扰动较小,试验安全:二二是有的装置PSS放大倍数调整困难,临界放大倍数不易达到:三是有的装置PSS放大倍数做死了,没法调整。在已进行的9处PSS试验中,只有台州电厂7、8号机ALSTHOM机组的增益裕量和相角裕量都小于标准规定值,说明采用测量开环频率特性稳定裕量的方法来测量调整PSS放大倍数是可行的。

  台州电厂7、8号机ALSTHOM机组的增益裕量和相角裕量小于标准规定值,但是其PSS放大倍数却只有0.27和0.48,在9台机的PSS放大倍数中偏小。北仑电厂1号机PSS计入PSS迭加点到励磁电压的放大倍数后,从PSS信号输入点到励磁电压的总放大倍数看,与稳定裕量的关系是明确的.

  台州电厂7、8号机和北仑电厂2号机总放大倍数人于其它机组一倍以上,它们的稳定裕量明显低于其它机组。

  台州电厂5号机组和温州电厂1、2号机组有着相近的总放大倍数,但是它们的稳定裕量有差别,这说明放大倍数与机组在系统中的位置有 关,放大倍数需要由试验或计算的稳定裕量来决定。

  对一些原动机稳定性不是很好、平时有功功率就有波动的机组,若PSS仅采用有功功率信号,会增加机组有功功率的波动。因为仅采用有功功率信号的PSS有反调作用。对此,首先应减小原动机的扰动,其次PSS取较小的放大倍数。

  4.关于PSS输出限幅

  放大倍数大,PSS输出就容易限幅。比如取有功功率为信号的PSS放大倍数为1,输出限幅为5%,当有功功率波动大于5%就限幅,即使有功功率波动人到无穷,PSS输出只使基波幅值增加到5%的1.27倍。一般认为,PSS输出限幅可以按5%~10%考虑。

  不同的振荡模式和强度对系统的破坏是不同的。故障发生可能伴随几种振荡模式,限幅是不加区别的削弱PSS信号对各种振荡模式的控制。智能式的PSS有可能判别严重后果的振荡模式并加大对其的控制力度。

  5.核实振荡模式分析结果

  可以通过励磁系统加入阶跃信号给系统一个激励,分析该响应,得到与本机有关的振荡模式,从而核实振荡模式计算分析结果。

  6.制订PSS整定计算规范和现场试验大纲

  上述问题涉及PSS计算分析研究。浙江省电力试验研究所早年进行过振荡模式的分析(小干扰稳定性分析)和PSS参数设计,但未与PSS现场投运结合起来。希望滚动地进行振荡模式的分析,相应制订协调一致的PSS整定计算规范和现场试验大纲。1999年6月全国电力系统励磁研讨会也提出了这个要求。 

进相运行

  减少发电机励磁电流,使发电机电势减小,功率因数角就变为超前的,发电机负荷电流产生助磁电枢反应,发电机向系统输送有功功率,但吸收无功功率,这种运行状态称为进相运行

  发电机进相运行时,主要应注意四个问题:一是静态稳定性降低;二是端部漏磁引起定子端部温度升高;三是厂用电电压降低;四是由于机端电压降低在输出功率不变的情况下发电机定子电流增加,易造成过负荷。

AVC

  A VC是第 2 7届中国电网调度运行会议上提出的现代电网调度发展新技术之一。 众所周知,频率和电压是衡量电能质 量的两大指标。AG C侧重频率控制, AV C 则侧重于电压控制。经历多年努力,A VC 获得迅猛发展,已从原来传统的厂站端 VQC发展到整个电网范围内的自动电压控制。国内最早的省级 AVC项 目由湖南 省于 2 0 0 0年立项 , 至 2 0 0 3 年 4月试运行 。 A VC的复杂程度远远大于 AG C,因为 它不但要考虑发电机组的无功控制,还 要兼顾电容器、电抗器以及变压 器分接 头的投切和控制,且约束条件也远多于 AG C, 因此A VC系统是一项复杂的系统工程 。 

  在自动装置的作用和给定电压约束条件下,发电机的励磁、变电站和用户的无功补偿装置的出力以及变压器的分接头都能按指令自动进行闭环调整,使其注入电网的无功逐渐接近电网要求的最优值 Q优 ,从而使全网有接近最优的无功电压潮流,这个过程叫自动电压控制( Automatic Voltage Control , 简称 A V C) , 它是现代电网控制的一项重要功能。

励磁

  励磁就是向发电机转子提供转子电源的装置。 

  根据直流电机励磁方式的不同,可分为他励磁,并励磁,串励磁,复励磁等方式,直流电机的转动过程中,励磁就是控制定子的电压使其产生的磁场变化,改变直流电机的转速,

  改变励磁同样起到改变转速的作用

  励磁的主要作用是:

  1、维持发电机端电压在给定值,当发电机负荷发生变化时,通过调节磁场的强弱来恒定机端电压。

  2、合理分配并列运行机组之间的无功分配。

  3、提高电力系统的稳定性,包括静态稳定性和暂态稳定性及动态稳定性。

  励磁的种类:

  按整流方式可分为旋转式励磁和静止式励磁两大类 。其中旋转式励磁又包括直流交流和无刷励磁;静止式励磁包括电势源静止励磁机和复合电源静止励磁机。

  一般我们把根据电磁感应原理使发电机转子形成旋转磁场的过程称为励磁. 

  励磁分类方法很多,比如按照发电机励磁的交流电源供给方式来分类: 

  第一类是由与发电机同轴的交流励磁机供电,称为交流励磁(他励)系统,此系统又可分为四种方式: 

  1.交流励磁机(磁场旋转)加静止硅整流器(有刷). 

  2.交流励磁机(磁场旋转)加静止可控硅整流器(有刷). 

  3.交流励磁机(电枢旋转)加硅整流器(无刷). 

  4.交流励磁机(电枢旋转)加可控硅整流器(无刷). 

  第二类是采用变压器供电,称为全静态励磁(自励)系统,当励磁变压器接在发电机的机端或接在单元式发电机组的厂用电母线上,称为自励励磁方式,把机端励磁变压器与发电机定子串联的励磁变流器结合起来向发电机转子供电的称为自复励励磁方式.这种结合方法也有四种: 

  1.直流侧并联 

  2.直流侧串联 

  3.交流侧并联 

  4.交流侧串联

电机励磁方式

  旋转电机中产生磁场的方式。现代电机大都以电磁感应为基础,在电机中都需要有磁场。这个磁场可以由永久磁铁产生,也可以利用电磁铁在线圈中通电流来产生。电机中专门为产生磁场而设置的线圈组称为励磁绕组。由于受永磁材料性能的,利用永久磁铁建立的磁场比较弱,它主要用于小容量电机。但是随着新型永磁材料的出现,特别是高磁能积的稀土材料如稀土钴、钕铁硼的出现,容量达百千瓦级的永磁电机已开始研制。 

  一般的电机多采用电流励磁。励磁的方式分为他励和自励两大类。 

  他励 由的电源为电机励磁绕组提供所需的励磁电流。例如用的直流电源为直流发电机的励磁绕组供电;由交流电源对异步电机的电枢绕组供电产生旋转磁场等等。前者为直流励磁,后者为交流励磁。同步电机按电网的情况,可以是转子的励磁绕组直流励磁,也可以定子上由电网提供交流励磁,一般以直流励磁为主。如直流励磁不足,则从电网输入滞后的无功电流对电机补充励磁;如直流励磁过强,则电机就向电网输出滞后的无功电流,使电机内部磁场削弱。采用直流励磁时,励磁回路中只有电阻引起的电压降,所需励磁电压较低,励磁电源的容量较小。采用交流励磁时,由于励磁线圈有很大的电感电抗,所需励磁电压要高得多,励磁电源的容量也大得多。 

  他励式励磁电源,原来常用直流励磁机。随着电力电子技术的发展,已较多地采用交流励磁机经半导体整流后对励磁绕组供电的方式励磁。励磁调节可以通过调节交流励磁机的励磁电流来实现;也可以在交流励磁机输出电压基本保持不变的情况下,利用可控整流调节。后者调节比较快速,还可以方便地利用可控整流桥的逆变工作状态达到快速灭磁和减磁,从而取消常用的灭磁开关。前一种方式,整流元件为二极管,如把它和交流励磁机电枢绕组、同步电机励磁绕组一起都装在转子上,则励磁电流就可以直接由交流励磁机经整流桥输入励磁绕组,不再需要集电环和电刷,可构成无刷励磁系统,为电机的运行、维护带来很多方便。当然整流元件、快速熔断器等器件在运行中均处于高速旋转状态,要承受相当大的离心力,这在结构设计时必须加以考虑。 

  自励 利用电机自身所发电功率的一部分供应本身的励磁需要。电机采用自励时,不需要外界单独的励磁电源,设备比较简单。但如果原先电机内部没有磁场,它就不可能产生电动势,也就不可能进行自励。所以实现自励的条件是电机内部必须有剩磁。 

  自励系统又可分为并励和复励两种。并励指仅由同步电机的电压取得能量的自励系统,复励指由同步电机的电压及电流两者取得能量的自励系统。并励发电机进行自励的条件和起励过程如图1和图2所示。图1是并励直流发电机的原理接线图。图2为其起励过程。其中曲线1为发电机的磁化曲线Φ=f(If)。由于在一定转速下电机的感应电动势与磁通成正比,所以曲线1同时也就是电机的空载特性曲线E 0=f(If),即电机的感应电动势与励磁电流If 之间的关系。而曲线2为励磁回路的电阻特性U=If·∑R,它表示励磁电流与电机电压之间的关系。它实际是一条斜率为ΣR的直线。其中∑R 为励磁回路的总电阻,它包括励磁绕组的电阻和外加的调节电阻Rr。 

  电机自励的过程如下:电机以某一速度п旋转时,由于电机中有剩磁,会在电枢绕组中感应电动势Er。在此电动势作用下,在励磁回路中会产生一个励磁电流If1。如励磁绕组接法正确,If1所产生的磁通势将使电机中的磁场加强,电枢绕组中感应电动势进一步增加到E1,使励磁电流又将增大到If2。如此相互促进,直至电机空载特性和电阻特性的交点A。在这一点上,电机的端电压为U0,它所产生的励磁电流为If1,而在这个励磁电流If1下,电机产生的电动势正好为U0,电机就稳定工作在这一点。如果增大励磁回路的电阻 ∑R,电阻特性的斜率将增大,它与空载特性的交点下移,发电机的输出电压就下降。当电阻增大到某一临界值∑Rcr时,电阻特性3与发电机空载特性几乎相重合。此时电机电压将不确定。若电机温度和运行条件有一点变化,电压就会大幅度变化。如进一步增大电阻,发电机就不能自励建立电压。在要求电压能大范围调节的场合,如同步发电机的励磁机,可在磁极钢片中开一个小槽,使磁路中出现狭窄区域。这些区域在比较小的磁通下就开始饱和,使电机的空载特性变得比较弯曲(图3),这样励磁回路电阻特性能在较大范围内和空载特性确定相交,从而获得较广的调压范围。 

  发电机在带负载时,负载电流在电机内阻上的电压降会使端电压下降。对于自并励电机,端电压的下降使励磁电流减少而导致电机端电压的进一步下降,如图4曲线1所示。为了克服这个缺点,发电机常采用复励,即除了并励绕组以外,再加一个串励绕组,串励绕组和负载电路串联。随着负载的增加,串励绕组的磁通势增大,使电机的感应电动势相应地增加,以补偿负载电流在内阻上的电压降,从而使电机的端电压能基本保持平稳,如图4曲线2所示。 

  异步发电机的自励 交流励磁的异步发电机也可以进行自励。其交流励磁电流须由电容器供给,利用LC 并联谐振的原理建立电压。与直流发电机一样,要实现自励,电机铁心中必须有剩磁,利用剩磁在电枢绕组中产生电动势对电容负载供电,输出容性电流。由于输出相位超前的容性电流,相当于输入滞后的感性电流,它具有助磁作用,使电机气隙磁场加强,从而增大电机的感应电动势和容性电流。最后由于磁路饱和的影响,电机的电压稳定在空载特性和电容特性的交点上(图5)。它建立电压的过程与自励直流发电机十分相似。只是用电容特性代替了电阻特性。电容特性的斜率为。为保证异步发电机能自励建压,需要有足够的电容,当电容小到临界值Ccr 时,电容特性与无载特性重合,电机就不能稳定发电。再减小电容,电机就不能自励建立电压。 

  同步电机的励磁 励磁系统除了应该能维持电机电压以外,还有其他一系列要求,如在调节系统的无功功率和在电力系统发生突然短路、突加负载及甩负载时,能对电机强行励磁或强行减磁,以提高电力系统运行的稳定性和可靠性,当电机内部发生短路事故时能对电机快速灭磁,以防止事故扩大,避免电机进一步损坏等。所以同步电机的励磁系统比较复杂,种类繁多,其分类列于表。 

  同步电机励磁系统的分类如下: 

  同步电机的励磁系统由励磁电源、手动调节装置、自动励磁调节器和灭磁装置等组成。励磁电源也分为自励式和他励式两大类。他励式设备比较庞大,但调节性能较好,而自励式电源比较简单,但是当电力系统发生故障,电网电压严重下降时,其励磁电流可能反而减少,使电网电压情况更为恶化。励磁电压影响电机运行的稳定性,为此必须采取适当的设备保护措施。 

  自励式励磁电源取自同步电机内部的辅助绕组或直接取自同步电机本身的出线端。同步电机自励式励磁系统中,自动励磁调节器是重要部件。它的作用是当同步电机的端电压和无功功率发生变化时,能根据电压量测比较单元和无功补偿(调差)单元送回的反馈信号,自动地控制励磁机或其他励磁供电电源的输出电流,达到自动调节端电压和无功功率的目的。此外,调节器中还有一些辅助调节装置,例如用以发电机某些运行量(如转子电流,定子电流等)的单元;通过引入转速或频率等附加信号来改善电子系统动态性能的稳定单元和其他补偿单元等。此外,还有灭磁装置,它是在电机内部发生短路时,使电机的励磁电流迅速衰减到零,从而使电机的感应电动势降到很低,以避免进一步损坏。

励磁装置

  1.概述

  励磁装置是指同步发电机的励磁系统中除励磁电源以外的对励磁电流能起控制和调节作用的电气装置。

  励磁系统是电站设备中不可缺少的部分。励磁系统包括励磁电源和励磁装置,其中励磁电源的主体是励磁机或励磁变压器;励磁装置则根据不同的规格、型号和使用要求,分别由调节屏、控制屏、灭磁屏和整流屏几部分组合而成。

  励磁装置的使用,是当电力系统正常工作的情况下,维持同步发电机机端电压于一给定的水平上,同时,还具有强行增磁、减磁和灭磁功能。对于采用励磁变压器作为励磁电源的还具有整流功能。励磁装置可以单独提供,亦可作为发电设备配套供应。

  中小型水利发电设备已实施出口产品质量许可制度,未取得出口质量许可证的产品不准出口。

  2.种类和规格

  励磁装置主要分为电磁型和半导体型两大类。电磁型励磁装置主要用于以直流或交流励磁机为励磁电源的励磁系统中,半导体型励磁装置既可以与励磁机一起组成静止(或旋转)整流器励磁系统,也可以与励磁变压器组成静止励磁系统。

  目前我国出口的励磁装置型号,适用范围及主要构成部分(如表)各生产厂除供应定型产品外,还可根据用户需要进行设计和制造。

  3.检验标准

  (1)GB7409-97《大中型同步发电机励磁系统基本技术条件》;

  (2)SD299-88《大中型水轮发电机静止整流励磁系统及装置的技术条件》;

  (3)《中小型同步发电机励磁系统基本技术要求》(报批稿);

  (4)JB/DQ3468-88《中小型水轮发电机励磁装置产品质量分等》;

  (5)GB3797-《电控设备第二部分:装有电子器件的电控设备》;

  (6)GB4720-84《电气传动控制设备第一部分:低压电器电控设备》;

  (7)其他基础标准;

  (8)合同或技术附件规定的标准或技术经济指标。

  4.检验项目

  (1)出厂检验项目:

  ①耐电压试验;

  ②操作、保护和控制回路动作试验;

  ③励磁系统开环试验,并初步整定自动电压调节器各工作点;

  ④外观质量检查;

  ⑤包装质量检验;

  ⑥合同或技术附件规定的其他项目。

  (2)型式试验项目:对于新试制的或对已定型产品的工艺或关键元器件改型,有可能影响产品性能时,需进行有关项目的型式试验。

  A.励磁系统顶值电压倍数、响应比、及响应时间的测定;

  B.同步发电机端电压整定范围的测定;

  C.稳态电压调整率的测定;

  D.电压调差率的测定;

  E.手动控制单元调整范围的测定;

  F.突加或突用负荷试验;

  G.自动/手动切换试验;

  H.建立额定电压试验;

  I.控制用直流、交流电压,频率在规定范围内变化时,励磁系统操作及运行可靠性的试验;

  J.灭磁试验;

  K.整流设备额定电流试验;

  L.励磁设备噪声的测定;

  M.最高和最低环境温度试验;

  N.试运行试验;

  O.全部出厂试验项目。

  5.其他

  目前出口励磁装置的生产厂家,除天津发电设备厂,杭州发电设备厂等能配套供应外,还有机械电子工业部定点的专门生产励磁装置的生产厂。如河北工业大学电工厂、广州电气研究所、嘉兴电控设备厂等。产品远销菲律宾、尼泊尔、几内亚、阿富汗、美国、土耳其、喀麦隆、斯里兰卡等10余个国家。

  由于励磁装置的设计参数与同步发电机、励磁电源的参数密切相关,所以单独订购励磁装置的用户,应提供或填写与励磁装置配套使用的发电设备,如同步发电机、励磁电源等的技术参数,以保证产品的统一配套性和使用性能。

  励磁装置,按规定应装在室内,所以它的使用环境温度,相对湿度、海拔高度等有一定的要求。在运输、保存和使用时应予以注意。对于性能及使用条件等方面的特殊要求,用户应在签约时明确提出。

励磁机

  一、原理概述:

  现在很多机组都已采用具有永磁付励磁机,来代替感应式中频付励磁机的它

  励半导体励磁系统。我们便于大家理解整个过程,所以我们就从它励付励说起。

  对于采用感应式付励磁机的系统,付励磁机由自励恒压单元来维持机端电压

  为额定值。

  在自动工作状态下,付励磁机供电给自动组整流单元,而在手动工作的情况

  下,则经感应调压器供电给手动组整流单元。

  调节器由测量、中放、移相、触发、稳压、自动测量触发、自励电源、自励

  功率单元以及自动整流单元和手动整流单元所组成。

  发电机端电压经电压互感器降压后输入到测量单元,电压讯号在测量单元中

  经测量比较后,将电压偏差量输入到中放单元放大,并作为移相单元的控制电压以相

  应改变触发单元的触发脉冲相位角,从而改变了自动可控硅的控制角和交流励磁机励

  磁电压值,相应地改变了主发电机的励磁,当发电机负载增大而使发电机电压下降时

  调节器使自动可控硅整流器的控制角检小,以增大发电机的励磁,当发电机减少负荷

  时,其操作以上述相反,减少励磁来维持发电机端电压为给定值。

  在大的扰动情况下,例如:由于电力系统短路或发电机近端短路时,机端电

  压下降10%以下,调节器将使可控硅整流器的控制角减少到近于零,使调节器输出最

  大电压值,对发电机进行强行励磁,而当发电机甩负荷使发电机电压突然上升时,调

  节器可使可控硅整流器的控制角迅速增加到150度到160度电角度。

  由于可控硅整流器由500周/秒电频电源供电相应减少了调解器磁性元件的时

  间常数,提高了快速反映的性能。

  为了获得规定的电压调差率和实现对发电机定子电流压降的补偿,由电流互

  感器供给调节器来调差及定子全电流补偿信号。

  在动态情况下,为了提高励磁系统的稳定性,在装置中付有发电机转子电压

  负反馈以及自励恒压输出电压软负反馈环节,其作用是当发电机转子励磁电压或自励

  恒压输出分别供给中放磁放大器,及自励移相放大器的稳定绕组,以阻尼上述电压的

  变化,起到了增加调节器运行稳定性的作用。

  对于付励磁机自励恒压部分,可保证在各种运行情况下,维持其端电压误差

  正负5%额定值的范围内。

  在主机定子绕组匝间发生短路,以及发生异常运行状态,须切除主机励磁的

  情况下,可用灭磁开关切除主机励磁,灭磁开关操作时引起的过电压峰值应不超过2

  千伏。接在主机转子回路中的放电器,是为了将主机磁场中出现的过电压在不至

  于损害转子绕组绝缘和硅整流器的水平,放电器的动作电压,原则上整定在略高于灭

  磁开关操作过电压的水平与发电器串联的电阻具有下列功能。

  作为放电器的限流电阻,经接触器与主机转子绕组相接,用以作为无励磁非

  同期运行方式的同期电阻以及抑止自同期过程中因滑差频率引起的过电压。

  一般灭磁电阻值取为主机转子绕组的3-5倍。

  二、自动励磁调节器

  自动励磁调节器可在下列工作条件下长期运行

  1、室内环境不高于+40度,不低于-20度。

  2、环境空气相对湿度不大于85%。

  3、周围环境无损害绝缘的腐蚀性气体或蒸汽。

  4、周围环境无易爆气体及导电尘埃。

  5、周围环境无剧烈的冲击与强烈的震动。

  励磁调节器与主机同轴的三相500周/秒的交流付励磁机供电,对于不同容量

  主机付励磁机的整定电压也不同。

  励磁机 在电传动内燃机车上牵引发电机的励磁功率较大,为提供励磁电流而专门设置的励磁电源,即励磁发电机,简称励磁机。通过对励磁机的控制来实现牵引发电机的理想外特性。一般采用三相交流发电机,由柴油机一牵引发电机组通过变速箱直接驱动,发出的三相交流电经桥式整流器整流后向牵引发电机励磁绕组供电。机车上普遍采用感应子励磁机,它是一台三相异板式交流发电机,其励磁绕组和电枢绕组都安装在电机的定子上,转子上没有绕组,因此电机与外电路的联系不需要电刷和滑环等滑动接触部件,因而使电机结构简单、工作可靠、制造成本较低、便于维护。

  感应子励磁机的定子铁芯由硅钢片叠压而成,定子铁芯内圆周上开有放置励磁绕组的大槽和放置电枢绕组的小槽,转子由齿形截面的硅钢片叠压而成。感应子发电机工作原理图见图1。

   

励磁电流

  在同步发电机的控制系统中,励磁调节器是其中的重要组成部分。当发电机单机运行时,励磁调节器通过调整发电机的励磁电流来调整发电机的端电压,当电力系统中有多台发电机并联运行时,励磁调节器通过调整励磁电流来合理分配并联运行发电机组间的无功功率,从而提高电力系统的静态和动态稳定性。因此,国内外相关专业人士一直致力于励磁调节器的研究。励磁调节器的发展也由机械式到电磁式,再发展到今天的数字式。目前,数字式励磁调节器的主导产品是以微型计算机为核心构成的,但其造价高,需要较高技术支持,在一些小型机组上推广有一定难度。由此,出现了以MCS-51单片机为核心的励磁调节器[1][2]。MCS-51单片机内部资源较少使得外围电路复杂,从而影响了整个励磁控制系统的精确性、快速性和稳定性。本文提出了一种基于PIC16F877的同步发电机自并励微机励磁调节器的设计方法。

  PIC16F877是美国Microchip公司生产的PIC16F87X系列芯片中功能最为齐全的微控制器。它可以实现在线调试和在线编程,内部带有8路10位A/ D 转换器 ,8KХ14位FLASH程序存储器,368Х8位RAM,256Х8位的EEPROM,14个中断源和3个定时/ 计数器,片内集成多达15个外围设备模块,因此外围电路大大简化,成本降低。

  2 自并励微机励磁调节器基本工作原理[4]

  图1为自并励励磁系统的原理接线图。发电机励磁功率取自发电机端,经过励磁变压器LB降压,可控硅整流器KZL整流后给发电机励磁。自动励磁调节器根据装在发电机出口的电压互感器TV和电流互感器TA采集的电压、电流信号以及其它输入信号,按事先确定的调节准则控制触发三相全控整流桥可控硅的移相脉冲,从而调节发电机的励磁电流,使得在单机运行时实现自动稳压,在并网时实现自动调节无功功率,提高电力系统的稳定性。

  发电机的线电压UAC和相电流IB分别经电压互感器和电流互感器变送后,经鉴相电路产生电压周期的方波脉冲和电压电流相位差的方波脉冲信号送PIC16F877微控制器,用PIC的计数器测量这两脉冲的宽度,便可得到相位差计数值,即电网的功率因素角[1]。然后通过查表得出相应的功率因素,进一步求出有功功率和无功功率。

  控制单元选用一片PIC16F877单片机,因PIC16F877单片机内部有A/D转换功能,从而不用外部A/D模块,这样减少了外部器件,降低了成本,增强了抗干扰能力。PIC单片机根据从输入通道采集的发电机运行状态变量的实时数据,进行控制计算和逻辑判断,求得控制量。在可控硅整流电路中,要求控制电路按照交流电源的相位向可控硅控制极输出一系列的脉冲,才能实现可控硅顺利导通和自然换相。“同步和数字触发控制电路”的作用就是将计算机CPU计算出来的、用数字量表示的可控硅控制角转换为触发脉冲。由功率放大电路将触发脉冲放大后去触发可控硅,从而控制励磁电流。

  3.1 CPU控制模块

  CPU控制模块是励磁调节器的控制核心,采用美国Microchip 公司生产的PIC16F877 单片机。PIC16F877具有独特的RISC(精简指令集) 结构,数据总线和指令总线分离的哈佛总线结构,使指令只有单字长的特性,且允许指令码的位数可多于8 位的数据位数,这与传统的采用CISC 结构的8 位单片机相比,可以达到2∶1 的代码压缩,速度提高4 倍。PIC16F877内部带有8路10位A/ D 转换器,8KХ14位FLASH程序存储器,368Х8位RAM,256Х8位的EEPROM,14个中断源和3个定时/ 计数器,片内集成多达15个外围设备模块。此外,还有低功耗睡眠模式和片内看门狗电路,易于实现低功耗设计和抗干扰设计。

  3.2 数据采集模块

  PIC单片机励磁调节器采集反映发电机运行工况的4个模拟信号,即发电机机端电压UAC和定子电流IB,励磁电压UL和励磁电流IL。这4个模拟信号经过整形滤波后,分别送入对应的4片采样保持器LF398,采样保持器在PIC16F877微控制器RE1脚产生的同步控制信号下,完成4路信号同步采样,将此4路被测信号分别接入RA0、RA1、RA2、RA3 4个10位A/D端口引脚。模拟输入的模拟参考电压可以在寄存器中设定。PIC16F877的A/D转换结果储存在两个8位的寄存器ADRESH和ADRESL中。由于PIC的A/D模块是电压输入的,所以在回路输入中,电压信号可以直接输入,而电流信号要在输入处接一适当电阻,将其转换成电压后再输入。当A/D模块的输入中有输入电压超过它的最高输入电压5V时,就可能损坏器件。因此,在A/D输入端接上对地5V的稳压管,这样,当有高于最高允许电压的输入电压出现时,利用稳压管可以把它稳定在正常的范围之内。

  开、停机,起、停励,手、自动,增、减功率等开关量通过光电隔离后与PIC16F877的端口B相连。

  3.3 显示模块

  为了节约引脚,利用PIC16F877单片机强大的I/O扩展功能,采用MSSP模块的SPI方式和移位寄存器芯片74HC595实现数码管的静态显示。

  3.4 通信模块

  目前,绝大多数励磁系统与上位机的通信采用RS-485。RS-485是一种半双工的通信协议,只能构成主从式结构的通信网络,通信联络方式为命令型。这种机制使得在构建大型复杂工业现场的实时测控网络时存在不足。CAN总线具有点对点、一点对多点、全局广播传送数据等功能,以及可靠性高、抗电磁干扰能力强、传输速率快、通信距离较远、易于使用和维护、便于网络扩张等优点,并考虑到励磁系统是在强电磁干扰环境中使用,所以本系统使用CAN总线通信。PIC16F877芯片没有集成CAN功能模块,但可以通过其SPI方式和CAN控制器MCP2510芯片与带智能适配卡的PC机实现CAN通信。

  4 微机励磁调节器软件设计

  PIC微机励磁调节器的软件采用PIC16F877的汇编语言和C语言混合编程,人机界面友好,操作简单。另外,采用模块化设计思想,以主程序为核心,设计了各功能模块子程序,使大量的功能在子程序中实现,简化了软件设计结构。子程序模块主要包括系统初始化及上电自检模块、PID调节模块、运行方式跟踪模块、过励和欠励控制模块、开停机模块、通信模块等。系统主程序流程图如图4所示。

  系统提供了三种不同的运行方式,即恒电压调节、恒励磁电流调节、恒无功功率调节。不同的运行方式可以通过键盘切换和设定给定值,此外,系统还设置了运行方式跟踪模块,即备用运行方式输出对当前运行方式输出的跟踪,以实现运行方式切换时的无扰动。

  由于励磁系统有惯性和滞后的控制对象,同时要求有较高的控制精度和较快的响应速度,因此本设计中采用改进型PID调节方式,即通过采用积分分离算法消除积分饱和效益,减小超调,同时利用在动态响应中加大比例作用,稳态过程中减小比例作用的变增益方法,消除大偏差,加快过渡过程,使励磁调节器具有较理想的调节特性。

  为了提高整个系统的可靠性,除了在上电时进行自检外,在每个计算周期内都进行了检错、容错处理和软件看门狗。

发电机励磁系统

  发电机励磁系统

  供给同步发电机励磁电流的电源及其附属设备统称为励磁系统。它一般由励磁功率单元和励磁调节器两个主要部分组成。励磁功率单元向同步发电机转子提供励磁电流;而励磁调节器则根据输入信号和给定的调节准则控制励磁功率单元的输出。励磁系统的自动励磁调节器对提高电力系统并联机组的稳定性具有相当大的作用。尤其是现代电力系统的发展导致机组稳定极限降低的趋势,也促使励磁技术不断发展。同步发电机的励磁系统主要由功率单元和调节器(装置)两大部分组成。如图所示:

  其中励磁功率单元是指向同步发电机转子绕组提供直流励磁电流的励磁电源部分,而励磁调节器则是根据控制要求的输入信号和给定的调节准则控制励磁功率单元输出的装置。由励磁调节器、励磁功率单元和发电机本身一起组成的整个系统称为励磁系统控制系统。励磁系统是发电机的重要组成部份,它对电力系统及发电机本身的安全稳定运行有很大的影响。励磁系统的主要作用有:1)根据发电机负荷的变化相应的调节励磁电流,以维持机端电压为给定值;2)控制并列运行各发电机间无功功率分配;3)提高发电机并列运行的静态稳定性;4)提高发电机并列运行的暂态稳定性;5)在发电机内部出现故障时,进行灭磁,以减小故障损失程度;6)根据运行要求对发电机实行最大励磁及最小励磁。

  同步发电机励磁系统的形式有多种多样,按照供电方式可以划分为他励式和自励式两大类。

  一、发电机获得励磁电流的几种方式

  1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。

  2、交流励磁机供电的励磁方式,现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100——200HZ的中频发电机,而交流副励磁机则采用400——500HZ的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。

  3、无励磁机的励磁方式:

  在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种

  励磁方式具有结简单,设备少,投资省和维护工作量少等优点。自复励磁方式除没有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。

  二、发电机与励磁电流的有关特性

  1、电压的调节

  自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统。无功负荷电流是造成发电机端电压下降的主要原因,当励磁电流不变时,发电机的端电压将随无功电流的增大而降低。但是为了满足用户对电能质量的要求,发电机的端电压应基本保持不变,实现这一要求的办法是随无功电流的变化调节发电机的励磁电流。

  2、无功功率的调节:

  发电机与系统并联运行时,可以认为是与无限大容量电源的母线运行,要改变发电机励磁电流,感应电势和定子电流也跟着变化,此时发电机的无功电流也跟着变化。当发电机与无限大容量系统并联运行时,为了改变发电机的无功功率,必须调节发电机的励磁电流。此时改变的发电机励磁电流并不是通常所说的“调压”,而是只是改变了送入系统的无功功率。

  3、无功负荷的分配:

  并联运行的发电机根据各自的额定容量,按比例进行无功电流的分配。大容量发电机应负担较多无功负荷,而容量较小的则负提供较少的无功负荷。为了实现无功负荷能自动分配,可以通过自动高压调节的励磁装置,改变发电机励磁电流维持其端电压不变,还可对发电机电压调节特性的倾斜度进行调整,以实现并联运行发电机无功负荷的合理分配。

  三、自动调节励磁电流的方法

  在改变发电机的励磁电流中,一般不直接在其转子回路中进行,因为该回路中电流很大,不便于进行直接调节,通常采用的方法是改变励磁机的励磁电流,以达到调节发电机转子电流的目的。常用的方法有改变励磁机励磁回路的电阻,改变励磁机的附加励磁电流,改变

  可控硅的导通角等。这里主要讲改变可控硅导通角的方法,它是根据发电机电压、电流或功率因数的变化,相应地改变可控硅整流器的导通角,于是发电机的励磁电流便跟着改变。这套装置一般由晶体管,可控硅电子元件构成,具有灵敏、快速、无失灵区、输出功率大、体积小和重量轻等优点。在事故情况下能有效地抑制发电机的过电压和实现快速灭磁。自动调节励磁装置通常由测量单元、同步单元、放大单元、调差单元、稳定单元、单元及一些辅助单元构成。被测量信号(如电压、电流等),经测量单元变换后与给定值相比较,然后将比较结果(偏差)经前置放大单元和功率放大单元放大,并用于控制可控硅的导通角,以达到调节发电机励磁电流的目的。同步单元的作用是使移相部分输出的触发脉冲与可控硅整流器的交流励磁电源同步,以保证控硅的正确触发。调差单元的作用是为了使并联运行的发电机能稳定和合理地分配无功负荷。稳定单元是为了改善电力系统的稳定而引进的单元 。励磁系统稳定单元 用于改善励磁系统的稳定性。单元是为了使发电机不致在过励磁或欠励磁的条件下运行而设置的。必须指出并不是每一种自动调节励磁装置都具有上述各种单元,一种调节器装置所具有的单元与其担负的具体任务有关。

  四、自动调节励磁的组成部件及辅助设备

  自动调节励磁的组成部件有机端电压互感器、机端电流互感器、励磁变压器;励磁装置需要提供以下电流,厂用AC380v、厂用DC220v控制电源.厂用DC220v合闸电源;需要提供以下空接点,自动开机.自动停机.并网(一常开,一常闭)增,减;需要提供以下模拟信号,发电机机端电压100V,发电机机端电流5A,母线电压100V,励磁装置输出以下继电器接点信号;励磁变过流,失磁,励磁装置异常等。 

  励磁控制、保护及信号回路由灭磁开关,助磁电路、风机、灭磁开关偷跳、励磁变过流、调节器故障、发电机工况异常、电量变送器等组成。在同步发电机发生内部故障时除了必须解列外,还必须灭磁,把转子磁场尽快地减弱到最小程度,保证转子不过的情况下,使灭磁时间尽可能缩短,是灭磁装置的主要功能。根据额定励磁电压的大小可分为线性电阻灭磁和非线性电阻灭磁。

  近十多年来,由于新技术,新工艺和新器件的涌现和使用,使得发电机的励磁方式得到了不断的发展和完善。在自动调节励磁装置方面,也不断研制和推广使用了许多新型的调节装置。由于采用微机计算机用软件实现的自动调节励磁装置有显著优点,目前很多国家都在研制和试验用微型机计算机配以相应的外部设备构成的数字自动调节励磁装置,这种调节装置将能实现自适应最佳调节。

功率因数

[编辑本段]

概述

  在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S

  功率因数的大小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大, 从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。

  (1) 最基本分析:拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。(我们日常用户的电能表计量的是有功功率,而没有计量无功功率,因此没有说使用70个单位而却要付100个单位的费用的说法,使用了70个单位的有功功率,你付的就是70个单位的消耗)在这个例子中,功率因数是0.7 (如果大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。

  (2) 基本分析:每种电机系统均消耗两大功率,分别是真正的有用功(叫千瓦)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。

  (3) 高级分析:在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。 

[编辑本段]

对于功率因数改善

  电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。因此在电网中安装并联电容器无功补偿设备后,将可以提供补偿感性负荷所消耗的无功功率,减少了电网电源侧向感性负荷提供及由线路输送的无功功率。由于减少了无功功率在电网中的流动,因此可以降低输配电线路中变压器及母线因输送无功功率造成的电能损耗,这就是无功补偿的效益。 无功补偿的主要目的就是提升补偿系统的功率因数。因为供电局发出来的电是以KVA或者MVA来计算的,但是收费却是以KW,也就是实际所做的有用功来收费,两者之间有一个无效功率的差值,一般而言就是以KVAR为单位的无功功率。大部分的无效功都是电感性,也就是一般所谓的电动机、变压器、日光灯……,几乎所有的无效功都是电感性,电容性的非常少见。也就是因为这个电感性的存在,造成了系统里的一个KVAR值,三者之间是一个三角函数的关系: 

  KVA的平方=KW的平方+KVAR的平方

  简单来讲,在上面的公式中,如果今天的KVAR的值为零的话,KVA就会与KW相等,那么供电局发出来的1KVA的电就等于用户1KW的消耗,此时成本效益最高,所以功率因数是供电局非常在意的一个系数。用户如果没有达到理想的功率因数,相对地就是在消耗供电局的资源,所以这也是为什么功率因数是一个法规的。目前就国内而言功率因数规定是必须介于电感性的0.9~1之间,低于0.9时需要接受处罚。 

  供电局为了提高他们的成本效益要求用户提高功率因数,那提高功率因数对我们用户端有什么好处呢?

  ① 通过改善功率因数,减少了线路中总电流和供电系统中的电气元件,如变压器、电器设备、导线等的容量,因此不但减少了投资费用,而且降低了本身电能的损耗。

  ② 藉由良好功因值的确保,从而减少供电系统中的电压损失,可以使负载电压更稳定,改善电能的质量。 

  ③ 可以增加系统的裕度,挖掘出了发供电设备的潜力。如果系统的功率因数低,那么在既有设备容量不变的情况下,装设电容器后,可以提高功率因数,增加负载的容量。

  举例而言,将1000KVA变压器之功率因数从0.8提高到0.98时:

  补偿前:1000×0.8=800KW 

  补偿后:1000×0.98=980KW 

  同样一台1000KVA的变压器,功率因数改变后,它就可以多承担180KW的负载。 

  ④ 减少了用户的电费支出;透过上述各元件损失的减少及功率因数提高的电费优惠。 

  此外,有些电力电子设备如整流器、变频器、开关电源等;可饱和设备如变压器、电动机、发电机等;电弧设备及电光源设备如电弧炉、日光灯等,这些设备均是主要的谐波源,运行时将产生大量的谐波。谐波对发动机、变压器、电动机、电容器等所有连接于电网的电器设备都有大小不等的危害,主要表现为产生谐波附加损耗,使得设备过载过热以及谐波过电压加速设备的绝缘老化等。

  并联到线路上进行无功补偿的电容器对谐波会有放大作用,使得系统电压及电流的畸变更加严重。另外,谐波电流叠加在电容器的基波电流上,会使电容器的电流有效值增加,造成温度升高,减少电容器的使用寿命。

  谐波电流使变压器的铜损耗增加,引起局部过热、振动、噪音增大、绕组附加发热等。 

  谐波污染也会增加电缆等输电线路的损耗。而且谐波污染对通讯质量有影响。当电流谐波分量较高时,可能会引起继电保护的过电压保护、过电流保护的误动作。

  因此,如果系统量测出谐波含量过高时,除了电容器端需要串联适宜的调谐(detuned)电抗外,并需针对负载特性专案研讨加装谐波改善装置。 

[编辑本段]

改善电能质量的理由

  为什么说提高用户的功率因数可以改善电压质量? 

  电力系统向用户供电的电压,是随着线路所输送的有功功率和无功功率变化而变化的。当线路输送一定数量的有功功率是,如输送的无功功率越多,线路的电压损失越大。即送至用户端的电压就越低。如果110KV以下的线路,其电压损失可近似为:△U=(PR+QX)/Ue

  其中:△U-线路的电压损失,KV

  Ue--线路的额定电压,KV

  P--线路输送的有功功率,KW

  Q--线路输送的无功功率,KVAR

  R—线路电阻,欧姆 

  X--线路电抗,欧姆 

  由上式可见,当用户功率因数提高以后,它向电力系统吸取的无功功率就要减少,因此电压损失也要减少,从而改善了用户的电压质量。

  ----------------------------

  在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功率与视在功率之比叫做功率因数,以COSΦ表示,其实最简单的测量方式就是测量电压与电流之间的相位差,得出的结果就是功率因数。 

视在功率

   

视在功率与功率因数

  1.视在功率

  

  在电工技术中,将单口网络端钮电压和电流有效值的乘积,称为视在功率(apparent power),记为S=UI。 

  显然,只有单口网络完全由电阻混联而成时,视在功率才等于平均功率,否则,视在功率总是大于平均功率(即有功功率),也就是说,视在功率不是单口网络实际所消耗的功率。

  为以示区别,视在功率不用瓦特(W)为单位,而用伏安(VA)或千伏安(KVA)为单位。

  2.功率因数

  

  在正弦交流电路中,有功功率一般小于视在功率,也就是说视在功率上打一个折扣才能等于平均功率,这个折扣就是Cosφ,称为功率因数(power factor),用 Cosφ表示。

  由于是单口网络端钮电压与电流间的相位差角,故φ往往称之为功率因数角。

  3.视在功率的意义

  由于视在功率等于网络端钮处电流、电压有效值的乘积,而有效值能客观地反映正弦量的大小和他的做功能力,因此这两个量的乘积反映了为确保网络能正常工作,外电路需传给网络的能量或该网络的容量。

  由于网络中既存在电阻这样的耗能元件,又存在电感、电容这样的储能元件,所以,外电路必须提供其正常工作所需的功率,即平均功率或有功功率,同时应有一部分能量被贮存在电感、电容等元件中。这就是视在功率大于平均功率的原因。只有这样网络或设备才能正常工作。若按平均功率给网络提供电能是不能保证其正常工作的。

  因此,在实际中,通常是用额定电压和额定电流来设计和使用用电设备的,用视在功率来标示它的容量。

  另外,由于电感、电容等元件在一段时间之内储存的能量将分别在其它时间段内释放掉,这部分能量可能会被电阻所吸收,也可能会提供给外电路。所以,我们看到单口网络的瞬时功率有时为正有时为负。

  在交流电路中,我们将正弦交流电电路中电压有效值与电流有效值的乘积称为视在功率,即S=UI视在功率不表示交流电路实际消耗的功率,只表示电路可能提供的最大功率或电路可能消耗的最大有功功率。

无功功率

目录[隐藏]

无功功率与功率因数 

无功补偿的一般方法 

采取适当措施,设法提高系统自然功率因数 

无功电源 

结束语 

  无功功率(reactive power ) 

[编辑本段]

无功功率与功率因数

  许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。无功功率单位为乏(Var)。

  在功率三角形中,有功功率P与视在功率S的比值,称为功率因数cosφ,其计算公式为: 

  cosφ=P/S=P/(P²+Q²)½

  在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。 

  1 影响功率因数的主要因素 

  (1)大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。据有关的统计,在工矿企业所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。 

  (2)变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。 

  (3)供电电压超出规定范围也会对功率因数造成很大的影响。 

  当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。 

[编辑本段]

无功补偿的一般方法

  无功补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿、高压集中补偿。下面简单介绍这3种补偿方式的适用范围及使用该种补偿方式的优缺点。 

  (1)低压个别补偿: 

  低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。低压个别补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,因此不会造成无功倒送。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。 

  (2)低压集中补偿: 

  低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 

  (3)高压集中补偿: 

  高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。适用于用户远离变电所或在供电线路的末端,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。同时便于运行维护,补偿效益高。 

[编辑本段]

采取适当措施,设法提高系统自然功率因数

  提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法。 

  (1)合理使用电动机; 

  (2)提高异步电动机的检修质量; 

  (3)采用同步电动机:同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功功率取决于转子中的励磁电流大小,在欠励状态时,定子绕组向电网"吸取"无功,在过励状态时,定子绕组向电网"送出"无功。因此,对于恒速长期运行的大型机构设备可以采用同步电动机作为动力。 

  异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是"异步电动机同步化"。 

  (4)合理选择配变容量,改善配变的运行方式:对负载率比较低的配变,一般采取"撤、换、并、停"等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。 

[编辑本段]

无功电源

  电力系统的无功电源除了同步电机外,还有静电电容器、静止无功补偿器以及静止无功发生器,这4种装置又称为无功补偿装置。除电容器外,其余几种既能吸收容性无功又能吸收感性无功。 

  (1)同步电机: 

  同步电机中有发电机、电动机及调相机3种。 

  ①同步发电机: 

  同步发电机是唯一的有功电源,同时又是最基本的无功电源,当其在额定状态下运行时,可以发出无功功率: 

  Q=S×sinφ=P×tgφ 

  其中:Q、S、P、φ是相对应的无功功率、视在功率、有功功率和功率因数角。 

  发电机正常运行时,以滞后功率因数运行为主,向系统提供无功,但必要时,也可以减小励磁电流,使功率因数超前,即所谓的"进相运行",以吸收系统多余的无功。 

  ②同步调相机: 

  同步调相机是空载运行的同步电机,它能在欠励或过励的情况下向系统吸收或供出无功,装有自励装置的同步电机能根据电压平滑地调节输入或输出的无功功率,这是其优点。但它的有功损耗大、运行维护复杂、响应速度慢,近来已逐渐退出电网运行。 

  ③并联电容器: 

  并联电容器补偿是目前使用最广泛的一种无功电源,由于通过电容器的交变电流在相位上正好超前于电容器极板上的电压,相反于电感中的滞后,由此可视为向电网"发?quot;无功功率: 

  Q=U2/Xc 

  其中:Q、U、Xc分别为无功功率、电压、电容器容抗。 

  并联电容器本身功耗很小,装设灵活,节省投资;由它向系统提供无功可以改善功率因数,减少由发电机提供的无功功率。 

  ④静止无功补偿器: 

  静止无功补偿器是由晶闸管所控制投切电抗器和电容器组成,由于晶闸管对于控制信号反应极为迅速,而且通断次数也可以不受。当电压变化时静止补偿器能快速、平滑地调节,以满足动态无功补偿的需要,同时还能做到分相补偿;对于三相不平衡负荷及冲击负荷有较强的适应性;但由于晶闸管控制对电抗器的投切过程中会产生高次谐波,为此需加装专门的滤波器。 

  ⑤静止无功发生器: 

  它的主体是一个电压源型逆变器,由可关断晶闸管适当的通断,将电容上的直流电压转换成为与电力系统电压同步的三相交流电压,再通过电抗器和变压器并联接入电网。适当控制逆变器的输出电压,就可以灵活地改变其运行工况,使其处于容性、感性或零负荷状态。 

  与静止无功补偿器相比,静止无功发生器响应速度更快,谐波电流更少,而且在系统电压较低时仍能向系统注入较大的无功。 

[编辑本段]

结束语

  本文集中探讨了功率因数对广大供电企业的影响以及提高功率因数所带来的经济效益和社会效益,介绍了影响功率因数的主要因素和提高功率因数的几种方法,还讨论了目前所通用的几种无功电源及其特点。这对供电企业是十分有益的。

有功功率

  有功功率----电能用于做功被消耗,它们转化为热能、光能、机械能或化学能等,称为有功功率;又叫平均功率。交流电的瞬时功率不是一个恒定值,功率在一个周期内的平均值叫做有功功率,它是指在电路中电阻部分所消耗的功率,以字母P表示,单位瓦特。

  电力系统频率与有功功率的关系:频率、电压是电网电能质量的二大指标。频率变化原因:负荷变动导致有功功率的不平衡。变化过程:负荷变化→发电机转速变化→频率变化→负荷的调节效应→新频率下达到平衡。消除偏移:原动机输入功率大小随负荷变动而改变。

三相不平衡

[编辑本段]

定义

  三相不平衡:是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。 

[编辑本段]

危害

  1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。

  2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。

  3.配变出力减少。配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力要受到每相额定容量的。假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。其出力减少程度与三相负载的不平衡度有关。三相负载不平衡越大,配变出力减少越多。为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。

  4.配变产生零序电流。配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。(高压侧没有零序电流)这迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。配变的绕组绝缘因过热而加快老化,导致设备寿命降低。同时,零序电流的存也会增加配变的损耗。

  5.影响用电设备的安全运行。配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。

  假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。负载重的一相电压降低,而负载轻的一相电压升高。在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。所以三相负载不平衡运行时,将严重危及用电设备的安全运行。

  6.电动机效率降低。配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。 

[编辑本段]

解决办法

  由不对称负荷引起的电网三相电压不平衡可以采取的解决办法: 

  1、将不对称负荷分散接在不同的供电点,以减少集中连接造成不平衡度严重超标的问题。 

  2、使用交叉换相等办法使不对称负荷合理分配到各相,尽量使其平衡化。

  3、加大负荷接入点的短路容量,如改变网络或提高供电电压级别提高系统承受不平衡负荷的能力。

  4、装设平衡装置。 简要列出以上几种解决三相电压或电流不平衡对电网及电能质量危害的技术措施。

  具体应该采取哪一种措施更为合理有效,还要根据实际情况,经过技术和经济比较后确定实施。

准同期

  准在电力系统中,同步电机的并列操作是经常进行的,为了保证安全快速地将同步电机并入电网,必须使用准同期控制器。

  准同期装置采用微处理芯片为核心,对合闸相角进行预测,对被同期对象的电压、频率进行变参数调节,提高了同期精度及并网速度。相角差测量由的硬件电路完成并提供合闸闭锁功能。装置可以对PT误差进行在线修正。装置也可用于变电站开关合闸操作。

  准同期装置主要功能:

  1、对待发电机自动调压、调频、以恒定导前时间tdp发出合闸脉冲(命令)完成并列操作。

  2、十进制数字显示器可显示以下参数:发电机电压UF、电网电压Us、发电机频率Ff、电网频率Fs、电压差△u、频率差△f、导前角dα、相角差△δ。有指示灯指示。

  3、各控制继电器动作时,相应指示灯亮。相角差有指示灯指示。

  4、参数可在线修改并断电保存。

  5、装置故障时,自动封锁调压、调频及合闸命令。并发出故障信号。

  7、能提供RS-485串行通信接口与上位计算机系统通信。

  8、能自动精确测量并记忆断路器合闸回路时间。

  同期,三明无线电八厂(准同期)生产的准同期质量牢靠 

  三明无线电八厂(准同期)生产的准同期主要有以下四种准同期分类: 

  TDS-6100系列自动准同期装置 

  TDS-6100系列自动准同期适用于:小型发电机组自动化并网设计的专用仪表。它能自动检测发电机组和电网的频率和电压,在频率、电压、相位均符合并网要求时以设定的越前时间提早发出合闸信号 , 使之能安全可靠地并网。当电压、频率、相位不符合要求时,自动闭锁合闸脉冲。 

  TDS-6568系列准同期装置 

  TDS-6568系列准同期适用于:适合大、中型发电机组并网。是发电设备的专用并网装置。具有自动检测机组和电网的电压和频率,根据要求自动发出信号,调节机组的转速和电压,直至符合并网条件。 

  TDS-6568-2系列准同期装置 

  TDS-6568-2系列准同期适用于:适合大、中型发电机组并网。是发电设备的专用并网装置。具有自动检测机组和电网的电压和频率,根据要求自动发出信号,调节机组的转速和电压,直至符合并网条件。 

  TDS-6600液晶屏自动准同期装置 

  TDS-6600液晶屏自动准同期适用于:大、中型发电机组并网。以 INTEL 公司的 80C 196 准十六位单片微机为核心,取消了传统的电压比较,波形的逻辑组合等硬件电路,塀弃了常规的利用比例微分模拟电路获得恒定越前时间的方法,充分利用微机的运算和判断功能,根据同期过程的频差、相角差数学模型进行调节和控制,大大缩短了并网时间,使发电机能快速准确地并入电网。从而兼有自同期的快速和准同期的并网无冲击的双重优越性。 

  先加励磁,到发电机接近同步速时,合闸,使发电机进入并网运行。

准同期并列

   准同期并列是将未投入系统的发电机加上励磁,并调节其电压和频率,在满足并列条件(即电压、频率、相位相同)时,将发电机投入系统,如果在理想情况下,使发电机的出口开关合闸,则在发电机定子回路中的环流将为零,这样不会产生电流和电磁力矩的冲击。这是准同期并列的最大优点。

自同期并列

  自同期并列是将励磁而转速接近同步转速的发电机投入系统并立即(或经一定时间)加上励磁。这样,发电机在很短时间被自动拉入同步。

发电机组的准同期并列

  从概念上讲准同期就是准确周期。用准同期法进行并列操作,发电机组电压必须相同,频率相同以及相位一致,这可通过装在同期盘上的两块电压表、两块频率表以及同期表和非同期指示灯来监视,并列操作步骤可以总结为如下四个步骤:

  1.将其中一台发电机组的负荷开关合上,将电压送至母线上,而另一台机组处在待并状态。

  2. 合上同期开头,调节待并发电机组的转速,使它等于或接近同步转速(与另一台机组的频率相差在半个周波以内),调节待并发电机组的电压,使其与另一台发电机组电压接近,在频率与电压均相近时,同期表的旋转速度是越来越慢的,同期指示灯也时亮时暗;3.当待并机组与另一台机组相位相同时,同期表指针指示向上方正中间位置,同期灯最暗,当待并机组与另一台机组相位差最大时,同期表指向下方正中位置,此时同期灯最亮,当同期表指针按顺时针方向旋转时,这说明待并发电机的频率比另一台机组的频率高,应降低待并发电机组的转速,反之当同期表指针按逆时针方向旋转时,应增加待并发电机组的转速。

  4.当同期表指针顺时针方向缓慢旋转,指针接近同期点时,立即将待并机组的断路器合闸,使两台发电机组并列。并列后切除同期表开关和相关的同期开关。

准同期并列法

  满足同期条件的并列方法叫做准同期并列法。用准同期法进行并列发电机时,要先将发电机的转速升至额定转速,再加励磁升到额定电压。然后比较待并发电机和电网的电压和频率,在符合条件的情况下,即当同步器指向“同期点”时(说明两侧电压接近一致),合上该发电机与电网接通的断路器。

  准同期法又分为自动准同期、半自动准同期与手动准同期三种:

  调整频率、电压及合开关全部有运行人员操作的,成为手动准同期;而由自动装置来完成时,便称其为自动准同期;当上述三项中任一项由自动装置来完成,其余仍旧由手动完成时,成为半自动准同期。

同期振荡

  同期振荡:当系统受干扰后引起并列运行的各发电的电势相角差的变化,但经过若干时间后,电势差相角变化过程结束,又重新恢复到原来数值或在新的数值下稳定运行,系统仍保持同步运行。这种不引起各并列运行发电机失去同步运行的功角的变化,称为同期振荡,同期振荡时电势相角差最大值不大于120º。

非同期振荡

  系统受干扰后,引并列运行的各发电机间的功角从0º到360º范围内不断变化,使系统并列运行中各发电机失去同步,进入失步行动状态,这种情况称为非同期振荡。

文档

电气设备知识

继电保护继电保护protectiverelay,powersystemprotection研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。微机继电保护测试仪随
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top