一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )
A.3 B.2 C.1 D.0
2.(5分)设复数z满足(1+i)z=2i,则|z|=( )
A. B. C. D.2
3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为 ( )
A.﹣80 B.﹣40 C.40 D.80
5.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为( )
A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1
6.(5分)设函数f(x)=cos(x+),则下列结论错误的是( )
A.f(x)的一个周期为﹣2π
B.y=f(x)的图象关于直线x=对称
C.f(x+π)的一个零点为x=
D.f(x)在(,π)单调递减
7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )
A.5 B.4 C.3 D.2
8.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )
A.π B. C. D.
9.(5分)等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为( )
A.﹣24 B.﹣3 C.3 D.8
10.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为( )
A. B. C. D.
11.(5分)已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=( )
A.﹣ B. C. D.1
12.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为( )
A.3 B.2 C. D.2
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)若x,y满足约束条件,则z=3x﹣4y的最小值为 .
14.(5分)设等比数列{an}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4= .
15.(5分)设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是 .
16.(5分)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是 .(填写所有正确结论的编号)
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.
(1)求c;
(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.
18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
19.(12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.
20.(12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,﹣2),求直线l与圆M的方程.
21.(12分)已知函数f(x)=x﹣1﹣alnx.
(1)若 f(x)≥0,求a的值;
(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程]
22.(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.
[选修4-5:不等式选讲]
23.已知函数f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.
2017年全国统一高考数学试卷(理科)(新课标Ⅲ)
参与试题解析
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2017•新课标Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )
A.3 B.2 C.1 D.0
【解答】解:由,解得:或,
∴A∩B的元素的个数是2个,
故选:B.
2.(5分)(2017•新课标Ⅲ)设复数z满足(1+i)z=2i,则|z|=( )
A. B. C. D.2
【解答】解:∵(1+i)z=2i,∴(1﹣i)(1+i)z=2i(1﹣i),z=i+1.
则|z|=.
故选:C.
3.(5分)(2017•新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
【解答】解:由已有中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据可得:
月接待游客量逐月有增有减,故A错误;
年接待游客量逐年增加,故B正确;
各年的月接待游客量高峰期大致在7,8月,故C正确;
各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确;
故选:A
4.(5分)(2017•新课标Ⅲ)(x+y)(2x﹣y)5的展开式中的x3y3系数为 ( )
A.﹣80 B.﹣40 C.40 D.80
【解答】解:(2x﹣y)5的展开式的通项公式:Tr+1=(2x)5﹣r(﹣y)r=25﹣r(﹣1)rx5﹣ryr.
令5﹣r=2,r=3,解得r=3.
令5﹣r=3,r=2,解得r=2.
∴(x+y)(2x﹣y)5的展开式中的x3y3系数=+23×=40.
故选:C.
5.(5分)(2017•新课标Ⅲ)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为( )
A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1
【解答】解:椭圆+=1的焦点坐标(±3,0),
则双曲线的焦点坐标为(±3,0),可得c=3,
双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,
可得,即,可得=,解得a=2,b=,
所求的双曲线方程为:﹣=1.
故选:B.
6.(5分)(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是( )
A.f(x)的一个周期为﹣2π
B.y=f(x)的图象关于直线x=对称
C.f(x+π)的一个零点为x=
D.f(x)在(,π)单调递减
【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,
B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,
C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,
D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D错误,
故选:D
7.(5分)(2017•新课标Ⅲ)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )
A.5 B.4 C.3 D.2
【解答】解:由题可知初始值t=1,M=100,S=0,
要使输出S的值小于91,应满足“t≤N”,
则进入循环体,从而S=100,M=﹣10,t=2,
要使输出S的值小于91,应接着满足“t≤N”,
则进入循环体,从而S=90,M=1,t=3,
要使输出S的值小于91,应不满足“t≤N”,跳出循环体,
此时N的最小值为2,
故选:D.
8.(5分)(2017•新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )
A.π B. C. D.
【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,
∴该圆柱底面圆周半径r==,
∴该圆柱的体积:V=Sh==.
故选:B.
9.(5分)(2017•新课标Ⅲ)等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为( )
A.﹣24 B.﹣3 C.3 D.8
【解答】解:∵等差数列{an}的首项为1,公差不为0.a2,a3,a6成等比数列,
∴,
∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,
解得d=﹣2,
∴{an}前6项的和为==﹣24.
故选:A.
10.(5分)(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为( )
A. B. C. D.
【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,
∴原点到直线的距离=a,化为:a2=3b2.
∴椭圆C的离心率e===.
故选:A.
11.(5分)(2017•新课标Ⅲ)已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=( )
A.﹣ B. C. D.1
【解答】解:因为f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(ex﹣1+)=0,
所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(ex﹣1+)有唯一解,
等价于函数y=1﹣(x﹣1)2的图象与y=a(ex﹣1+)的图象只有一个交点.
①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;
②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,
且y=a(ex﹣1+)在(﹣∞,1)上递增、在(1,+∞)上递减,
所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(ex﹣1+)的图象的最高点为B(1,2a),
由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(ex﹣1+)的图象有两个交点,矛盾;
③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,
且y=a(ex﹣1+)在(﹣∞,1)上递减、在(1,+∞)上递增,
所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(ex﹣1+)的图象的最低点为B(1,2a),
由题可知点A与点B重合时满足条件,即2a=1,即a=,符合条件;
综上所述,a=,
故选:C.
12.(5分)(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为( )
A.3 B.2 C. D.2
【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,
则A(0,0),B(1,0),D(0,2),C(1,2),
∵动点P在以点C为圆心且与BD相切的圆上,
设圆的半径为r,
∵BC=2,CD=1,∴BD==
∴BC•CD=BD•r,∴r=,
∴圆的方程为(x﹣1)2+(y﹣2)2=,
设点P的坐标为(cosθ+1,sinθ+2),
∵=λ+μ,
∴(cosθ+1,sinθ﹣2)=λ(1,0)+μ(0,2)=(λ,2μ),
∴cosθ+1=λ,sinθ+2=2μ,
∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,
∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,
故λ+μ的最大值为3,
故选:A
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)(2017•新课标Ⅲ)若x,y满足约束条件,则z=3x﹣4y的最小值为 ﹣1 .
【解答】解:由z=3x﹣4y,得y=x﹣,作出不等式对应的可行域(阴影部分),
平移直线y=x﹣,由平移可知当直线y=x﹣,
经过点B(1,1)时,直线y=x﹣的截距最大,此时z取得最小值,
将B的坐标代入z=3x﹣4y=3﹣4=﹣1,
即目标函数z=3x﹣4y的最小值为﹣1.
故答案为:﹣1.
14.(5分)(2017•新课标Ⅲ)设等比数列{an}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4= ﹣8 .
【解答】解:设等比数列{an}的公比为q,∵a1+a2=﹣1,a1﹣a3=﹣3,
∴a1(1+q)=﹣1,a1(1﹣q2)=﹣3,
解得a1=1,q=﹣2.则a4=(﹣2)3=﹣8.
故答案为:﹣8.
15.(5分)(2017•新课标Ⅲ)设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是 x>﹣ .
【解答】解:若x≤0,则x﹣≤﹣,
则f(x)+f(x﹣)>1等价为x+1+x﹣+1>1,即2x>﹣,则x>,
此时<x≤0,
当x>0时,f(x)=2x>1,x﹣>﹣,
当x﹣>0即x>时,满足f(x)+f(x﹣)>1恒成立,
当0≥x﹣>﹣,即≥x>0时,f(x﹣)=x﹣+1=x+,
此时f(x)+f(x﹣)>1恒成立,综上x>,
故答案为:x>
16.(5分)(2017•新课标Ⅲ)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是 ②③ .(填写所有正确结论的编号)
【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,
不妨设图中所示正方体边长为1,
故|AC|=1,|AB|=,
斜边AB以直线AC为旋转轴,则A点保持不变,
B点的运动轨迹是以C为圆心,1为半径的圆,
以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,
则D(1,0,0),A(0,0,1),直线a的方向单位向量=(0,1,0),||=1,
直线b的方向单位向量=(1,0,0),||=1,
设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),
其中θ为B′C与CD的夹角,θ∈[0,2π),
∴AB′在运动过程中的向量,=(﹣cosθ,﹣sinθ,1),||=,
设与所成夹角为α∈[0,],
则cosα==|sinθ|∈[0,],
∴α∈[,],∴③正确,④错误.
设与所成夹角为β∈[0,],
cosβ===|cosθ|,
当与夹角为60°时,即α=, |sinθ|===,
∵cos2θ+sin2θ=1,∴cosβ=|cosθ|=,
∵β∈[0,],∴β=,此时与的夹角为60°,
∴②正确,①错误.
故答案为:②③.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。
17.(12分)(2017•新课标Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.
(1)求c;
(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.
【解答】解:(1)∵sinA+cosA=0,∴tanA=,
∵0<A<π,∴A=,
由余弦定理可得a2=b2+c2﹣2bccosA,
即28=4+c2﹣2×2c×(﹣),即c2+2c﹣24=0,解得c=﹣6(舍去)或c=4,
(2)∵c2=b2+a2﹣2abcosC,
∴16=28+4﹣2×2×2×cosC,∴cosC=,∴sinC=,∴tanC=
在Rt△ACD中,tanC=,∴AD=,∴S△ACD=AC•AD=×2×=,
∵S△ABC=AB•AC•sin∠BAD=×4×2×=2,
∴S△ABD=S△ABC﹣S△ADC=2﹣=
18.(12分)(2017•新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
【解答】解:(1)由题意知X的可能取值为200,300,500,
P(X=200)==0.2,
P(X=300)=,
P(X=500)==0.4,
∴X的分布列为:
X | 200 | 300 | 500 |
P | 0.2 | 0.4 | 0.4 |
当200<n≤300时,
若x=200,则Y=200×(6﹣4)+(n﹣200)×2﹣4)=800﹣2n,
若x≥300,则Y=n(6﹣4)=2n,
∴EY=p(x=200)×(800﹣2n)+p(x≥300)×2n=0.2(800﹣2n)+0.8=1.2n+160,
∴EY≤1.2×300+160=520,
当300<n≤500时,若x=200,则Y=800﹣2n,
若x=300,则Y=300×(6﹣4)+(n﹣300)×(2﹣4)=1200﹣2n,
∴当n=300时,(EY)max=0﹣0.4×300=520,
若x=500,则Y=2n,
∴EY=0.2×(800﹣2n)+0.4(1200﹣2n)+0.4×2n=0﹣0.4n,
当n≥500时,Y=,
EY=0.2(800﹣2n)+0.4(1200﹣2n)+0.4(2000﹣2n)=1440﹣2n,
∴EY≤1440﹣2×500=440.
综上,当n=300时,EY最大值为520元.
19.(12分)(2017•新课标Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.
【解答】(1)证明:如图所示,取AC的中点O,连接BO,OD.
∵△ABC是等边三角形,∴OB⊥AC.
△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.
∵△ACD是直角三角形,
∴AC是斜边,∴∠ADC=90°.∴DO=AC.∴DO2+BO2=AB2=BD2.
∴∠BOD=90°.∴OB⊥OD.
又DO∩AC=O,∴OB⊥平面ACD.
又OB⊂平面ABC,∴平面ACD⊥平面ABC.
(2)解:设点D,B到平面ACE的距离分别为hD,hE.则=.
∵平面AEC把四面体ABCD分成体积相等的两部分,
∴===1.∴点E是BD的中点.
建立如图所示的空间直角坐标系.不妨取AB=2.
则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E.
=(﹣1,0,1),=,=(﹣2,0,0).
设平面ADE的法向量为=(x,y,z),则,即,取=.
同理可得:平面ACE的法向量为=(0,1,).
∴cos===﹣.∴二面角D﹣AE﹣C的余弦值为.
20.(12分)(2017•新课标Ⅲ)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,﹣2),求直线l与圆M的方程.
【解答】解:方法一证明(1)当直线l的斜率不存在时则A(2,2)B(2,﹣2),
则=(2,2),=(2,﹣2),则•=0,∴⊥,
则坐标原点O在圆M上;
当直线l的斜率存在,设直线l的方程y=k(x﹣2),A(x1,y1),B(x2,y2),
,整理得:k2x2﹣(4k2+1)x+4k2=0,
则x1x2=4,4x1x2=y12y22=(y1y2)2,由y1y2<0,则y1y2=﹣4,
由•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,
综上可知:坐标原点O在圆M上;
方法二:设直线l的方程x=my+2,
,整理得:y2﹣3my﹣4=0,A(x1,y1),B(x2,y2),则y1y2=﹣4,
则(y1y2)2=4x1x2,则x1x2=4,则•=x1x2+y1y2=0,
则⊥,则坐标原点O在圆M上,∴坐标原点O在圆M上;
(2)由(1)可知:x1x2=4,x1+x2=,y1+y2=,y1y2=﹣4,
圆M过点P(4,﹣2),则=(4﹣x1,﹣2﹣y1),=(4﹣x2,﹣2﹣y2),
由•=0,则(4﹣x1)(4﹣x2)+(﹣2﹣y1)(﹣2﹣y2)=0,
整理得:k2+k﹣2=0,解得:k=﹣2,k=1,
当k=﹣2时,直线l的方程为y=﹣2x+4,则x1+x2=,y1+y2=﹣1,
则M(,﹣),半径为r=丨MP丨==,
∴圆M的方程(x﹣)2+(y+)2=.
当直线斜率k=1时,直线l的方程为y=x﹣2,
同理求得M(3,1),则半径为r=丨MP丨=,
∴圆M的方程为(x﹣3)2+(y﹣1)2=10,
综上可知:直线l的方程为y=﹣2x+4,圆M的方程(x﹣)2+(y+)2=
或直线l的方程为y=x﹣2,圆M的方程为(x﹣3)2+(y﹣1)2=10.
21.(12分)(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.
(1)若 f(x)≥0,求a的值;
(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.
【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,
所以f′(x)=1﹣=,且f(1)=0.
所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,
所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增即f(x)min=f(a),
又因为f(x)min=f(a)≥0,所以a=1;
(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,
所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.
一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,
即(1+)(1+)…(1+)<e;
另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2,
同时当n≥3时,(1+)(1+)…(1+)∈(2,e).
因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,
所以m的最小值为3.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程]
22.(10分)(2017•新课标Ⅲ)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.
【解答】解:(1)∵直线l1的参数方程为,(t为参数),
∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;
又直线l2的参数方程为,(m为参数),
同理可得,直线l2的普通方程为:x=﹣2+ky②;
联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;
(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,
∴其普通方程为:x+y﹣=0,
联立得:, ∴ρ2=x2+y2=+=5.
∴l3与C的交点M的极径为ρ=.
[选修4-5:不等式选讲]
23.(2017•新课标Ⅲ)已知函数f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.
【解答】解:(1)∵f(x)=|x+1|﹣|x﹣2|=,f(x)≥1,
∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;
当x>2时,3≥1恒成立,故x>2;
综上,不等式f(x)≥1的解集为{x|x≥1}.
(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,
即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.
由(1)知,g(x)=,
当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x=>﹣1,
∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;
当﹣1<x<2时,g(x)=﹣x2+3x﹣1其开口向下,对称轴方程为x=∈(﹣1,2),
∴g(x)≤g()=﹣+﹣1=;
当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x=<2,
∴g(x)≤g(2)=﹣4+2=3=1;
综上,g(x)max=,
∴m的取值范围为(﹣∞,].