最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

中考数学提升讲义-共顶点旋转模型及其延伸

来源:动视网 责编:小OO 时间:2025-09-24 17:04:24
文档

中考数学提升讲义-共顶点旋转模型及其延伸

中考数学共顶点旋转模型一、题源分析(人教版八年级上册第55页)如图,,求证(人教版九年级上册第63页)如图,都是等边三角形,BE与DC有什么关系?你能用旋转的性质说明上述关系成立的理由吗?二、共顶点旋转模型简要概述共顶点模型,是指两个等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。例如上题中的三角形ADC和三角形ABE。寻找共顶点旋转模型的步骤如下:(1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全
推荐度:
导读中考数学共顶点旋转模型一、题源分析(人教版八年级上册第55页)如图,,求证(人教版九年级上册第63页)如图,都是等边三角形,BE与DC有什么关系?你能用旋转的性质说明上述关系成立的理由吗?二、共顶点旋转模型简要概述共顶点模型,是指两个等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。例如上题中的三角形ADC和三角形ABE。寻找共顶点旋转模型的步骤如下:(1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全
中考数学共顶点旋转模型

一、题源分析

(人教版八年级上册第55页)如图, ,求证 

(人教版九年级上册第63页)如图,都是等边三角形,BE与DC有什么关系?你能用旋转的性质说明上述关系成立的理由吗?

二、共顶点旋转模型简要概述

共顶点模型,是指两个等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。例如上题中的三角形ADC和三角形ABE。寻找共顶点旋转模型的步骤如下:

(1)寻找公共的顶点

(2)列出两组相等的边或者对应成比例的边

(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。

典例分析1:

(2014年河南)(1)问题发现

如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE

填空:(1)∠AEB的度数为            ;

     (2)线段AD、BE之间的数量关系是        。

(2)拓展探究

如图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE。请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由。

思路点拨:

(1)第一问,考虑到两个等边三角形有一个公共顶点C,在点C处可以找到两组相等的边,列出来即可表示为:,观察边的形式,就可以得到全等的两个三角形是:.

(2)类比第一问,可以得到,故而全等的三角形为,之后再做计算即可。

典例分析2:

(2015年安徽)如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.    

(1)求证:AD=BC;            (2)求证:△AGD∽△EGF;

(3)如图2,若AD、BC所在直线互相垂直,求的值.

思路点拨:

(1)第一问,结合共顶点旋转全等模型即可

(2)类比第一问,全等模型的延伸,相似模型。根据,类比全等证明相似。

(3)结合前两问的相似即可得到即为相似比,亦即求解的值即可。

典例分析3:

(2011年广州中考)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.

(1)证明:B、C、E三点共线;

(2)若M是线段BE的中点,N是线段AD的中点,证明:。

思路点拨:

(1)第一问,共顶点旋转模型

(2)根据第一问的全等证明即可构造旋转模型求解。

三、共顶点旋转模型的应用

1.半角模型:所谓半角模型,是指在从角的顶点向角内部引出两条直线,这两条直线形成的夹角恰好等于原角的一半大小。

典例分析1:(2014年四川绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为   .

思路点拨:将三角形ADF绕点A顺时针旋转90°即可。

典例分析2:(2016•南岗区模拟)已知△ABC是等边三角形,点D在△ABC外,连接BD、CD,且∠BDC=120°,BD=DC,点M,N分别在边AB,AC上,连接DM、DN、MN,∠MDN=60°,探究:△AMN的周长Q与等边△ABC的周长L的关系.

(1)如图1,当DM=DN时,=      ;

(2)如图2,当DM≠DN时,猜想=      ;并加以证明.

思路点拨:典型的半角模型,将三角形DCN绕点D逆时针旋转120°即可。

总结:

(1)半角模型的基本形式:大角包小角,小角得一半

(2)半角模型的解题方法:将被两条直线分开的两个角中任意一个旋转全角大小即可。

延伸例题:(2016春•黄岛区期中)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.

【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】

如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足      关系时,仍有EF=BE+FD.

【探究应用】

如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=(40﹣40)米,现要在E、F之间修一条笔直道路,求这条道路EF的长为      米.

2.K字模型:所谓K字模型,与半角模型类似,实则是指构成的图形类似于“K”字。

题源:人教版课本新课标八年级下册第30页,勾股定理的证明。

典例分析1:(2014年四川南充)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为(  )

A.(﹣,1)    B.    (﹣1,)    C.    (,1)    D.    (﹣,﹣1)

思路点拨:过点C作x轴的垂线即可。

典例分析2:(2015山东省德州市)

(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.

(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.

(3)应用    

请利用(1)(2)获得的经验解决问题:

如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.    

总结:

K字形模型解题基本思路是:利用角的和相等的原理,证明K的两边的三角形相似或全等。在不相似或者全等时,构造三角形使两个三角形全等相似。

例如:(2016•洛阳模拟)(1)【问题发现】小明遇到这样一个问题:

如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:      ;

(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.

(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.

文档

中考数学提升讲义-共顶点旋转模型及其延伸

中考数学共顶点旋转模型一、题源分析(人教版八年级上册第55页)如图,,求证(人教版九年级上册第63页)如图,都是等边三角形,BE与DC有什么关系?你能用旋转的性质说明上述关系成立的理由吗?二、共顶点旋转模型简要概述共顶点模型,是指两个等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。例如上题中的三角形ADC和三角形ABE。寻找共顶点旋转模型的步骤如下:(1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top