最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

函数的单调性 例题解析 试题

来源:动视网 责编:小OO 时间:2025-09-24 20:53:35
文档

函数的单调性 例题解析 试题

函数的单调性例题解析【例1】求以下函数的增区间与减区间(1)y=|x2+2x-3|解(1)令f(x)=x2+2x-3=(x+1)2-4.先作出f(x)的图像,保存其在x轴及x轴上方局部,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示.由图像易得:递增区间是[-3,-1],[1,+∞)递减区间是(-∞,-3],[-1,1](2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间.解当x-1≥0且x-1≠1时,得x≥1且x≠2,那么函数y=-x.当x-1<0且
推荐度:
导读函数的单调性例题解析【例1】求以下函数的增区间与减区间(1)y=|x2+2x-3|解(1)令f(x)=x2+2x-3=(x+1)2-4.先作出f(x)的图像,保存其在x轴及x轴上方局部,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示.由图像易得:递增区间是[-3,-1],[1,+∞)递减区间是(-∞,-3],[-1,1](2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间.解当x-1≥0且x-1≠1时,得x≥1且x≠2,那么函数y=-x.当x-1<0且
函数的单调性 例题解析

【例1】求以下函数的增区间与减区间

(1)y=|x2+2x-3|

解  (1)令f(x)=x2+2x-3=(x+1)2-4.

先作出f(x)的图像,保存其在x轴及x轴上方局部,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示.

由图像易得:

递增区间是[-3,-1],[1,+∞)

递减区间是(-∞,-3],[-1,1]

(2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间.

解  当x-1≥0且x-1≠1时,得x≥1且x≠2,那么函数y=-x.

当x-1<0且x-1≠-1时,得x<1且x≠0时,那么函数y=x-2.

∴增区间是(-∞,0)和(0,1)

减区间是[1,2)和(2,+∞)

(3)解:由-x2-2x+3≥0,得-3≤x≤1.

令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1]上是在x∈[-1,1]上是.

∴函数y的增区间是[-3,-1],减区间是[-1,1].

【例2】函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,务实数a的取值范围.

解  当a=0时,f(x)=x在区间[1,+∞)上是增函数.

假设a<0时,无解.

∴a的取值范围是0≤a≤1.

【例3】二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比拟大小:

(1)f(6)与f(4)

解  (1)∵y=f(x)的图像开口向下,且对称轴是x=3,∴x≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)

时为减函数.

解  任取两个值x1、x2∈(-1,1),且x1<x2.

当a>0时,f(x)在(-1,1)上是减函数.

当a<0时,f(x)在(-1,1)上是增函数.

【例5】利用函数单调性定义证明函数f(x)=-x3+1在(-∞,+∞)上是减函数.

证  取任意两个值x1,x2∈(-∞,+∞)且x1<x2.

又∵x1-x2<0,∴f(x2)<f(x1)

故f(x)在(-∞,+∞)上是减函数.

得f(x)在(-∞,+∞)上是减函数.

解  定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x1、x2,且x1<x2.

∴当0<x1<x2≤1或者-1≤x1<x2<0时,有x1x2-1<0,x1x2>0,f(x1)>f(x2)

∴f(x)在(0,1],[-1,0)上为减函数.

当1≤x1<x2或者x1<x2≤-1时,有x1x2-1>0,x1x2>0,f(x1)>f(x2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.

根据上面讨论的单调区间的结果,又x>0时,f(x)min=f(1)=2,当x<0时,f(x)max=f(-1)=-2.由上述的单调区间及最值可大致

说明  1°要掌握利用单调性比拟两个数的大小.

2°注意对参数的讨论(如例4).

3°在证明函数的单调性时,要灵敏运用配方法、判别式法及讨论方法等.(如例5)

4°例6是分层讨论,要逐步培养.

励志赠言经典语录精选句;挥动**,放飞梦想。

厚积薄发,一鸣惊人。

关于努力学习的语录。自古以来就有许多文人留下如头悬梁锥刺股的经典的,而近代又有哪些经典的高中励志赠言出现呢?小编筛选了高中励志赠言句经典语录,看看是否有些帮助吧。

好男儿踌躇满志,你将如愿;真巾帼灿烂扬眉,我要成功。

含泪播种的人一定能含笑收获。

贵在坚持、难在坚持、成在坚持。

功崇惟志,业广为勤。

耕耘今天,收获明天。

成功,要靠辛勤与汗水,也要靠技巧与方法。

常说口里顺,常做手不笨。

不要自卑,你不比别人笨。不要自满,别人不比你笨。

高三某班,青春无限,超越梦想,勇于争先。

敢闯敢拼,**协力,争创佳绩。

丰富学校体育内涵,共建时代校园文化。

奋勇冲击,永争第一。

奋斗冲刺,誓要蟾宫折桂;全心拼搏,定能金榜题名。

放心去飞,勇敢去追,追一切我们为完成的梦。

翻手为云,覆手为雨。

二人同心,其利断金。

短暂辛苦,终身幸福。

东隅已逝,桑榆非晚。

登高山,以知天之高;临深溪,以明地之厚。

大智若愚,大巧若拙。

聪明出于勤奋,天才在于积累。

把握机遇,心想事成。

奥运精神,永驻我心。

“想”要壮志凌云,“干”要脚踏实地。

**燃烧希望,励志赢来成功。楚汉名城,喜迎城运盛会,三湘四水,欢聚体坛精英。

乘风破浪会有时,直挂云帆济沧海。

不学习,如何养活你的众多女人。

不为失败找理由,要为成功想办法。

不勤于始,将悔于终。

不苦不累,高三无味;不拼不搏,高三白活。

不经三思不求教不动笔墨不读书,人生难得几回搏,此时不搏,何时搏。

不敢高声语,恐惊读书人。

不耻下问,学以致用,锲而不舍,孜孜不倦。

博学强识,时不我待,黑发勤学,自首不悔。

播下希望,充满**,勇往直前,永不言败。

保定宗旨,砥砺德行,远见卓识,创造辉煌。

百尺高梧,撑得起一轮月色;数椽矮屋,锁不住五夜书声。

文档

函数的单调性 例题解析 试题

函数的单调性例题解析【例1】求以下函数的增区间与减区间(1)y=|x2+2x-3|解(1)令f(x)=x2+2x-3=(x+1)2-4.先作出f(x)的图像,保存其在x轴及x轴上方局部,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示.由图像易得:递增区间是[-3,-1],[1,+∞)递减区间是(-∞,-3],[-1,1](2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间.解当x-1≥0且x-1≠1时,得x≥1且x≠2,那么函数y=-x.当x-1<0且
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top