
一、拓展提优试题
1.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是 .
2.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元,那么,笔记本每个 元,笔每支 元.
3.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是 595 .
4.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是 分.
5.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为 .
6.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是 .
7.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是 米/分钟.
8.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC= 厘米.
9.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.
例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到 对孪生质数.
10.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了
分钟.
11.用1、2、3、5、6、7、8、9这8个数字最多可以组成 个质数(每个数字只能使用一次,且必须使用).
12.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是 .
13.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有 块.
14.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果 颗.
15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.
【参】
一、拓展提优试题
1.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.
解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:
5123﹣4876=247
故答案为:247.
2.解:根据题干分析可得:
5个笔记本+5支笔=32元;
则1个笔记本+1支笔=6.4(元),
3个笔记本+3支笔+4支笔=30.4(元),
所以4支笔=30.4﹣3×6.4=11.2(元),
所以1支笔的价格是:11.2÷4=2.8(元),
则每个笔记本的价钱是:6.4﹣2.8=3.6(元).
答:每个笔记本3.6元,每支笔2.8元.
故答案为:3.6;2.8.
3.解:根据分析,得知,=45=5×9
既能被5整除,又能被9整除,故a的最大值为5,b=9,
45被59□95整除,则□=8,五位数最大为595
故答案为:595
4.解:设录取者的平均成绩为X分,我们可以得到方程,
200X+(1000﹣200)×(X﹣60)=55×1000,
200X+800(X﹣60)=55000,
1000X﹣48000=55000,
1000X=103000,
X=103;
所以录取分数线是103﹣4=99(分).
答:录取分数线是99分.
故答案为:99.
5.解:2&(3&4),
=(2+1)÷[(3+1)÷4],
=3÷1,
=3;
故答案为:3.
6.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,
最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:
2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,
显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.
故答案是:2016.
7.解:1800÷320﹣1800÷(320×1.5)
=5.625﹣3.75
=1.875(分钟)
320×[5﹣(17﹣15+1.875)]÷5
=320×[5﹣3.875]÷5
=320×1.125÷5
=360÷5
=72(米/分钟)
答:李双推车步行的速度是72米/分钟.
故答案为:72.
8.解:△ABC的周长是16厘米,可得△AEF的周长为:16÷2=8 (厘米),
△AEF 和四边形BCEF周长和为:8+10=18(厘米),
所以BC=18﹣16=2(厘米),
答:BC=2厘米.
故答案为:2.
9.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.
故答案为8.
10.解:6÷2=3(组)
11时30分﹣8是=3时30分=210分
210×2÷3
=420÷3
=140(分钟)
答:每人打了140分钟.
故答案为:140.
11.解:可以组成下列质数:
2、3、5、7、61、,一共有6个.
答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.
故答案为:6.
12.解:3n是5的倍数,3n的个数一定是0或5
又因为大于0的自然数n是3的倍数,
所以3n最小是45
3n=45
n=15
所以n最小取15时,n是3的倍数,3n是5的倍数.
答:n的最小值是15.
故答案为:15.
13.解:依题意可知:
第一层的共有4个角满足条件.
第二层的4个角是4面红色,去掉所有的角块其余的符合条件.
分别是3+2+3+2=10(个);
共10+4=14(个);
故答案为:14
14.解:10÷2=5(颗)
18÷2=9(颗)
此时A有:26﹣10+9=25(颗)
此时C有:25×4=100(颗)
原来C有:100﹣9﹣5=86(颗)
答:松鼠C原有松果 86颗.
故答案为:86.
15.解:220﹣83×2
=220﹣166
=54(元)
54÷(2+7)
=54÷9
=6(元)
答:网球每个6元.
