最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

高二数学-椭圆的定义及其标准方程

来源:动视网 责编:小OO 时间:2025-09-25 14:02:40
文档

高二数学-椭圆的定义及其标准方程

高二年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:12.21专题椭圆及其标准方程目标掌握椭圆的定义和标准方程重难点待定系数法求椭圆的标准方程常考点待定系数法求椭圆的标准方程;点差法求直线的斜率椭圆及其标准方程第一部分:基础知识梳理知识点一椭圆的定义平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.根据椭圆的定义可知:椭圆上的点M满足集合,,且都为常数。当即时,集合P为椭圆.当即时,集合P为线段。当即时,集合P为空集。知
推荐度:
导读高二年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:12.21专题椭圆及其标准方程目标掌握椭圆的定义和标准方程重难点待定系数法求椭圆的标准方程常考点待定系数法求椭圆的标准方程;点差法求直线的斜率椭圆及其标准方程第一部分:基础知识梳理知识点一椭圆的定义平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.根据椭圆的定义可知:椭圆上的点M满足集合,,且都为常数。当即时,集合P为椭圆.当即时,集合P为线段。当即时,集合P为空集。知
   高二   年级  数学   科辅导讲义(第  讲)

学生姓名:         授课教师:           授课时间:   12.21          

专    题椭圆及其标准方程
目    标掌握椭圆的定义和标准方程
重 难 点待定系数法求椭圆的标准方程
常 考 点待定系数法求椭圆的标准方程;点差法求直线的斜率
椭圆及其标准方程

第一部分:基础知识梳理

 知识点一  椭圆的定义

   平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.

根据椭圆的定义可知:椭圆上的点M满足集合,,且都为常数。

当即时,集合P为椭圆.

当即时,集合P为线段。

当即时,集合P为空集。

知识点二  椭圆的标准方程

   (1),焦点在轴上时,焦点为,焦点。

   (2),焦点在轴上时,焦点为,焦点。

知识点三  椭圆方程的一般式

   这种形式的方程在课本中虽然没有明确给出,但在应用中有时比较方便,在此提供出来,作为参考:

(其中为同号且不为零的常数,),它包含焦点在轴或轴上两种情形。方程可变形为。

当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。

    一般式,通常也设为,应特别注意均大于0,标准方程为。

知识点四  椭圆标准方程的求法

  1. 定义法

    椭圆标准方程可由定义直接求得,这是求椭圆方程中很重要的方法之一,当问题是以实际问题给出时,一定要注意使实际问题有意义,因此要恰当地表示椭圆的范围.

例1、 在△ABC中,A、B、C所对三边分别为,且B(—1,0)C(1,0),求满足,且成等差数列时,顶点A的曲线方程。

变式练习 1.在△ABC中,点B(-6,0)、C(0,8),且成等差数列。

          (1)求证:顶点A在一个椭圆上运动.

          (2)指出这个椭圆的焦点坐标以及焦距。

  

2。 待定系数法

首先确定标准方程的类型,并将其用有关参数表示出来,然后结合问题的条件,建立参数满足的等式,求得的值,再代入所设方程,即一定性,二定量,最后写方程.

例2、 已知椭圆的中心在原点,且经过点P(3,0),=3b,求椭圆的标准方程。

例3、 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程。

变式练习 2.求适合下列条件的椭圆的方程;

(1)两个焦点分别是(—3,0),(3,0)且经过点(5,0)。

(2)两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12。

3.已知椭圆经过点和点,求椭圆的标准方程.

4.求中心在原点,焦点在坐标轴上,且经过两点的椭圆标准方程。

知识点五  共焦点的椭圆方程的求解

    一般地,与椭圆共焦点的椭圆可设其方程为。

例4、 过点(-3,2)且与有相同焦点的椭圆的方程为(    )

A.        B。       C。       D。   

变式练习 5。求经过点(2,—3)且椭圆有共同焦点的椭圆方程.

知识点六  与椭圆有关的轨迹问题的求解方法

   与椭圆有关的轨迹方程的求解是一种很重要的题型,教材中的例题就是利用代入求球轨。迹,其基本思路是设出轨迹上一点和已知曲线上一点,建立其关系,再代入。

例5、已知圆,从这个圆上任意一点向轴作垂线段,点在上,并且,求点的轨迹。

知识点七  与弦的中点有关问题的求解方法

   直线与椭圆相交于两点、,称线段为椭圆的相交弦.与这个弦中点有点的轨迹问题是一类综合性很强的题目,因此解此类问题必须选择一个合理的方法,如“设而不求”法,其主要特点是巧代线段的斜率。其方程具体是:设直线与椭圆相交于两点,坐标分别为、,线段的中点为,则有

       

①式—②式,得,即

    ∴

  通常将此方程用于求弦中点的轨迹方程。

例6.已知:椭圆,求:

       (1)以P(2,—1)为中点的弦所在直线的方程;

       (2)斜率为2的相交弦中点的轨迹方程;

       (3)过Q(8,2)的直线被椭圆截得的弦中点的轨迹方程。

第二部分:巩固练习

  1。 设为椭圆的焦点,P为椭圆上一点,则的周长是(   )

      A.   16      B。    8      C。       D.    无法确定 

  2。 椭圆的两个焦点之间的距离为(    )

      A。   12       B.   4      C。    3       D。    2   

  3. 椭圆的一个焦点是(0,2),那么等于(    )

       A。   —1     B。  1     C。        D.    - 

  4。 已知椭圆的焦点是,P是椭圆上的一个动点,如果延长到,使得,那么动点的轨迹是(    )

       A。    圆    B。   椭圆     C.  双曲线的一支     D。   抛物线 

   5. 已知椭圆的焦点在轴上,则的取值范围是__________.

   6. 椭圆的焦点坐标是___________. 

   7。 椭圆的焦距为2,则正数的值____________。

文档

高二数学-椭圆的定义及其标准方程

高二年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:12.21专题椭圆及其标准方程目标掌握椭圆的定义和标准方程重难点待定系数法求椭圆的标准方程常考点待定系数法求椭圆的标准方程;点差法求直线的斜率椭圆及其标准方程第一部分:基础知识梳理知识点一椭圆的定义平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.根据椭圆的定义可知:椭圆上的点M满足集合,,且都为常数。当即时,集合P为椭圆.当即时,集合P为线段。当即时,集合P为空集。知
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top