
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.若分式的值为0,则x的值为( )
A.0 B.1 C.﹣1 D.±1
2.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).
A.; B.;
C.; D..
3.下列长度的三条线段,能组成三角形的是( )
A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm
4.若关于x的方程=3的解为正数,则m的取值范围是( )
A.m< B.m<且m≠
C.m>﹣ D.m>﹣且m≠﹣
5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为( )
A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)
6.如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为,则的值为( )
A. B. C. D.
7.下列说法中错误的是( )
A.是0.25的一个平方根 B.正数a的两个平方根的和为0
C.的平方根是 D.当时,没有平方根
8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,,,,则等于( )
A. B. C. D.
9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是( )
A. B. C. D.
10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )
A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD
二、填空题(本大题共6小题,每小题3分,共18分)
1.已知1<x<5,化简+|x-5|=________.
2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.
3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.
4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为________.
5.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=________度.
6.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .
三、解答题(本大题共6小题,共72分)
1.解下列分式方程
(1) (2)
2.先化简,再求值:,其中.
3.已知方程组中为非正数,为负数.
(1)求的取值范围;
(2)在的取值范围中,当为何整数时,不等式的解集为?
4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
6.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.
(1)求一件A,B型商品的进价分别为多少元?
(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?
参
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、B
3、B
4、B
5、A
6、C
7、C
8、C
9、A
10、D
二、填空题(本大题共6小题,每小题3分,共18分)
1、4
2、(3,7)或(3,-3)
3、20
4、﹣2<x<2
5、:略
6、(10,3)
三、解答题(本大题共6小题,共72分)
1、(1);(2).
2、 .
3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.
4、(1)略;(2)45°;(3)略.
5、(1)略(2)90°(3)AP=CE
6、(1) B型商品的进价为120元, A型商品的进价为150元;(2) 5500元.
