
总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题
2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形
3.角平分线添辅助线
4.垂直平分线联结线段两端
5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,
6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形
7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.
2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.
3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”
5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
6)已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.
一、倍长中线(线段)造全等
例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.
例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.
例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.
二、截长补短
1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC
2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC。
3、如图,已知在内,,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。求证:BQ+AQ=AB+BP
4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,
求证:
5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC
三、平移变换
例1 AD为△ABC的角平分线,直线MN⊥AD于为MN上一点,△ABC周长记为,△EBC周长记为.求证>.
例2 如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.
四、借助角平分线造全等
1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD
2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.
五、旋转
例1 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.
例2 D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。
(1)当绕点D转动时,求证DE=DF。
(2)若AB=2,求四边形DECF的面积。
例3 如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为 ;
参与提示
一、倍长中线(线段)造全等
例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.
解:延长AD至E使AE=2AD,连BE,由三角形性质知
AB-BE <2AD 解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG, 显然BG=FC, 在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知 EG=EF 在△BEG中,由三角形性质知 EG 解:延长AE至G使AG=2AE,连BG,DG, 显然DG=AC, ∠GDC=∠ACD 由于DC=AC,故 ∠ADC=∠DAC 在△ADB与△ADG中, BD=AC=DG,AD=AD, ∠ADB=∠ADC+∠ACD=∠ADC+∠GDC=∠ADG 故△ADB≌△ADG,故有∠BAD=∠DAG,即AD平分∠BAE 二、截长补短 1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC 解:(截长法)在AB上取中点F,连FD △ADB是等腰三角形,F是底AB中点,由三线合一知 DF⊥AB,故∠AFD=90° △ADF≌△ADC(SAS) ∠ACD=∠AFD=90°即:CD⊥AC 2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC 解:(截长法)在AB上取点F,使AF=AD,连FE △ADE≌△AFE(SAS) ∠ADE=∠AFE, ∠ADE+∠BCE=180° ∠AFE+∠BFE=180° 故∠ECB=∠EFB △FBE≌△CBE(AAS) 故有BF=BC 从而;AB=AD+BC 3、如图,已知在△ABC内,,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。求证:BQ+AQ=AB+BP 解:(补短法, 计算数值法)延长AB至D,使BD=BP,连DP 在等腰△BPD中,可得∠BDP=40° 从而∠BDP=40°=∠ACP △ADP≌△ACP(ASA) 故AD=AC 又∠QBC=40°=∠QCB 故 BQ=QC BD=BP 从而BQ+AQ=AB+BP 4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分, 求证: 解:(补短法)延长BA至F,使BF=BC,连FD △BDF≌△BDC(SAS) 故∠DFB=∠DCB ,FD=DC 又AD=CD 故在等腰△BFD中 ∠DFB=∠DAF 故有∠BAD+∠BCD=180° 5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC 解:(补短法)延长AC至F,使AF=AB,连PD △ABP≌△AFP(SAS) 故BP=PF 由三角形性质知 PB-PC=PF-PC < CF=AF-AC=AB-AC 三、平移变换 例1 AD为△ABC的角平分线,直线MN⊥AD于为MN上一点,△ABC周长记为,△EBC周长记为.求证>. 解:(镜面反射法)延长BA至F,使AF=AC,连FE AD为△ABC的角平分线, MN⊥AD 知∠FAE=∠CAE 故有 △FAE≌△CAE(SAS) 故EF=CE 在△BEF中有: BE+EF>BF=BA+AF=BA+AC 从而PB=BE+CE+BC>BF+BC=BA+AC+BC=PA 例2 如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE. 证明:取BC中点M,连AM并延长至N,使MN=AM,连BN,DN. ∵BD=CE, ∴DM=EM, ∴△DMN≌△EMA(SAS), ∴DN=AE, 同理BN=CA. 延长ND交AB于P,则BN+BP>PN,DP+PA>AD, 相加得BN+BP+DP+PA>PN+AD, 各减去DP,得BN+AB>DN+AD, ∴AB+AC>AD+AE。 四、借助角平分线造全等 1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD,DC+AE =AC 证明☹(角平分线在三种添辅助线,计算数值法)∠B=60度, 则∠BAC+∠BCA=120度; AD,CE均为角平分线, 则∠OAC+∠OCA=60度=∠AOE=∠COD; ∠AOC=120度. 在AC上截取线段AF=AE,连接OF. 又AO=AO;∠OAE=∠OAF .则⊿OAE≌ΔOAF(SAS), OE=OF;AE=AF; ∠AOF=∠AOE=60度. 则∠COF=∠AOC-∠AOF=60度=∠COD; 又CO=CO;∠OCD=∠OCF. 故⊿OCD≌ΔOCF(SAS), OD=OF;CD=CF. OE=OD DC+AE=CF+AF=AC. 2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F. (1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长. 解:(垂直平分线联结线段两端)连接BD,DC DG垂直平分BC,故BD=DC 由于AD平分∠BAC, DE⊥AB于E,DF⊥AC于F,故有 ED=DF 故RT△DBE≌RT△DFC(HL) 故有BE=CF。 AB+AC=2AE AE=(a+b)/2 BE=(a-b)/2 五、旋转 例1 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数. 证明:将三角形ADF绕点A顺时针旋转90度,至三角形ABG 则GE=GB+BE=DF+BE=EF 又AE=AE,AF=AG, 所以三角形AEF全等于AEG 所以∠EAF=∠GAE=∠BAE+∠GAB=∠BAE+∠DAF 又∠EAF+∠BAE+∠DAF=90 所以∠EAF=45度 例2 D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。 (1)当绕点D转动时,求证DE=DF。 (2)若AB=2,求四边形DECF的面积。 解:(计算数值法)(1)连接DC, D为等腰斜边AB的中点,故有CD⊥AB,CD=DA CD平分∠BCA=90°,∠ECD=∠DCA=45° 由于DM⊥DN,有∠EDN=90° 由于 CD⊥AB,有∠CDA=90° 从而∠CDE=∠FDA= 故有△CDE≌△ADF(ASA) 故有DE=DF (2)S△ABC=2, S四DECF= S△ACD=1 例3 如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为 ; 解:(图形补全法, “截长法”或“补短法”, 计算数值法) AC的延长线与BD的延长线交于点F,在线段CF上取点E,使CE=BM ∵△ABC为等边三角形,△BCD为等腰三角形,且∠BDC=120°, ∴∠MBD=∠MBC+∠DBC=60°+30°=90°, ∠DCE=180°-∠ACD=180°-∠ABD=90°, 又∵BM=CE,BD=CD, ∴△CDE≌△BDM, ∴∠CDE=∠BDM,DE=DM, ∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°, ∵在△DMN和△DEN中, DM=DE ∠MDN=∠EDN=60° DN=DN ∴△DMN≌△DEN, ∴MN=NE ∵在△DMA和△DEF中, DM=DE ∠MDA=60°- ∠MDB=60°- ∠CDE=∠EDF (∠CDE=∠BDM) ∠DAM=∠DFE=30° ∴△DMN≌△DEN (AAS), ∴MA=FE 的周长为AN+MN+AM=AN+NE+EF=AF=6
