最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

全等三角形问题中常见的8种辅助线的作法(有答案)

来源:动视网 责编:小OO 时间:2025-09-25 12:49:23
文档

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇
推荐度:
导读全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇
全等三角形问题中常见的辅助线的作法

总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题

2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形

3.角平分线添辅助线

4.垂直平分线联结线段两端

5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,

6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形

7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.

2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.

3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.

6)已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.

一、倍长中线(线段)造全等

例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.

例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.

二、截长补短

1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC

2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC。 

3、如图,已知在内,,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。求证:BQ+AQ=AB+BP

4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,

求证: 

                 

5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC

三、平移变换

例1 AD为△ABC的角平分线,直线MN⊥AD于为MN上一点,△ABC周长记为,△EBC周长记为.求证>.

例2 如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.

四、借助角平分线造全等

1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD

2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F. 

(1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.

五、旋转

例1 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.

                                                 

例2 D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。

(1)当绕点D转动时,求证DE=DF。

(2)若AB=2,求四边形DECF的面积。

例3 如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为          ;

                             参与提示

一、倍长中线(线段)造全等

例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.

解:延长AD至E使AE=2AD,连BE,由三角形性质知

AB-BE <2AD例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG,

显然BG=FC,

在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知

EG=EF

在△BEG中,由三角形性质知

EG故:EF例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.

    

解:延长AE至G使AG=2AE,连BG,DG,

显然DG=AC,  ∠GDC=∠ACD

由于DC=AC,故  ∠ADC=∠DAC

在△ADB与△ADG中,

 BD=AC=DG,AD=AD,

∠ADB=∠ADC+∠ACD=∠ADC+∠GDC=∠ADG

故△ADB≌△ADG,故有∠BAD=∠DAG,即AD平分∠BAE

二、截长补短

1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC

解:(截长法)在AB上取中点F,连FD

△ADB是等腰三角形,F是底AB中点,由三线合一知

DF⊥AB,故∠AFD=90°

△ADF≌△ADC(SAS)      ∠ACD=∠AFD=90°即:CD⊥AC

2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC

解:(截长法)在AB上取点F,使AF=AD,连FE

△ADE≌△AFE(SAS)

∠ADE=∠AFE,

∠ADE+∠BCE=180°

∠AFE+∠BFE=180°

故∠ECB=∠EFB

△FBE≌△CBE(AAS)

故有BF=BC

从而;AB=AD+BC

3、如图,已知在△ABC内,,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。求证:BQ+AQ=AB+BP

解:(补短法, 计算数值法)延长AB至D,使BD=BP,连DP

在等腰△BPD中,可得∠BDP=40°

从而∠BDP=40°=∠ACP

△ADP≌△ACP(ASA)

故AD=AC

又∠QBC=40°=∠QCB   故 BQ=QC

BD=BP

从而BQ+AQ=AB+BP

4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,

求证: 

解:(补短法)延长BA至F,使BF=BC,连FD

△BDF≌△BDC(SAS)

故∠DFB=∠DCB  ,FD=DC

又AD=CD

故在等腰△BFD中

∠DFB=∠DAF

故有∠BAD+∠BCD=180°

5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC

解:(补短法)延长AC至F,使AF=AB,连PD

△ABP≌△AFP(SAS)

故BP=PF

由三角形性质知

PB-PC=PF-PC < CF=AF-AC=AB-AC

三、平移变换

例1 AD为△ABC的角平分线,直线MN⊥AD于为MN上一点,△ABC周长记为,△EBC周长记为.求证>.

解:(镜面反射法)延长BA至F,使AF=AC,连FE

AD为△ABC的角平分线, MN⊥AD

知∠FAE=∠CAE

故有

△FAE≌△CAE(SAS)

故EF=CE

在△BEF中有: BE+EF>BF=BA+AF=BA+AC

从而PB=BE+CE+BC>BF+BC=BA+AC+BC=PA

例2 如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.

证明:取BC中点M,连AM并延长至N,使MN=AM,连BN,DN. 

∵BD=CE,

∴DM=EM,

∴△DMN≌△EMA(SAS),

∴DN=AE,

同理BN=CA.

延长ND交AB于P,则BN+BP>PN,DP+PA>AD,

相加得BN+BP+DP+PA>PN+AD,

各减去DP,得BN+AB>DN+AD,

∴AB+AC>AD+AE。

四、借助角平分线造全等

1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD,DC+AE =AC

证明☹(角平分线在三种添辅助线,计算数值法)∠B=60度,

则∠BAC+∠BCA=120度;

AD,CE均为角平分线,

则∠OAC+∠OCA=60度=∠AOE=∠COD;

∠AOC=120度.

在AC上截取线段AF=AE,连接OF.

又AO=AO;∠OAE=∠OAF

.则⊿OAE≌ΔOAF(SAS),

OE=OF;AE=AF; 

∠AOF=∠AOE=60度.

则∠COF=∠AOC-∠AOF=60度=∠COD;

又CO=CO;∠OCD=∠OCF.

故⊿OCD≌ΔOCF(SAS),

OD=OF;CD=CF.

OE=OD

DC+AE=CF+AF=AC.

2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F. 

(1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.

解:(垂直平分线联结线段两端)连接BD,DC

DG垂直平分BC,故BD=DC

由于AD平分∠BAC, DE⊥AB于E,DF⊥AC于F,故有

ED=DF

故RT△DBE≌RT△DFC(HL)

故有BE=CF。

AB+AC=2AE

AE=(a+b)/2

BE=(a-b)/2

五、旋转

例1 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.

                                                 

证明:将三角形ADF绕点A顺时针旋转90度,至三角形ABG

则GE=GB+BE=DF+BE=EF

又AE=AE,AF=AG,

所以三角形AEF全等于AEG

所以∠EAF=∠GAE=∠BAE+∠GAB=∠BAE+∠DAF

又∠EAF+∠BAE+∠DAF=90

所以∠EAF=45度

例2 D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。

(1)当绕点D转动时,求证DE=DF。

(2)若AB=2,求四边形DECF的面积。

解:(计算数值法)(1)连接DC,                                  

D为等腰斜边AB的中点,故有CD⊥AB,CD=DA

CD平分∠BCA=90°,∠ECD=∠DCA=45°

由于DM⊥DN,有∠EDN=90°

由于 CD⊥AB,有∠CDA=90°

从而∠CDE=∠FDA=

故有△CDE≌△ADF(ASA)

故有DE=DF

(2)S△ABC=2, S四DECF= S△ACD=1

例3 如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为          ;

解:(图形补全法, “截长法”或“补短法”, 计算数值法) AC的延长线与BD的延长线交于点F,在线段CF上取点E,使CE=BM

∵△ABC为等边三角形,△BCD为等腰三角形,且∠BDC=120°,

∴∠MBD=∠MBC+∠DBC=60°+30°=90°,

∠DCE=180°-∠ACD=180°-∠ABD=90°,

又∵BM=CE,BD=CD,

∴△CDE≌△BDM,

∴∠CDE=∠BDM,DE=DM,

∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°,

∵在△DMN和△DEN中,

      DM=DE

     ∠MDN=∠EDN=60°

     DN=DN

∴△DMN≌△DEN,

∴MN=NE

∵在△DMA和△DEF中,

      DM=DE

     ∠MDA=60°- ∠MDB=60°- ∠CDE=∠EDF    (∠CDE=∠BDM)

    ∠DAM=∠DFE=30°

∴△DMN≌△DEN   (AAS),

∴MA=FE

的周长为AN+MN+AM=AN+NE+EF=AF=6

文档

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top