
——形成精准思维模式,快速解题
类型一 利用“三线合一”作辅助线
一、已知等腰作垂线(或中线、角平分线)
1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且BE=BC,若∠EAB=20°,则∠BAC=__________.
2.如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:DE=DF;
(2)若∠A=90°,图中与DE相等的有哪些线段(不说明理由)?
3.如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.
二、构造等腰三角形
4.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为 ( )
A.0.4cm2 B.0.5cm2
C.0.6cm2 D.0.7cm2
5.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD.求证:BD=2CE.
类型二 巧用等腰直角三角形构造全等
6.(2016·铜仁中考)如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.
类型三 等腰(边)三角形中截长补短或作平行线构造全等
7.如图,已知AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD.
8.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)求证:PD=DQ;
(2)若△ABC的边长为1,求DE的长.
参与解析
1.40°
2.(1)证明:如图,连接AD.∵AB=AC,D是BC的中点,∴∠EAD=∠FAD.又∵DE⊥AB,DF⊥AC,∴DE=DF.
(2)解:若∠BAC=90°,图中与DE相等的有线段DF,AE,AF,BE,CF.
3.证明:如图,作EF⊥AC于F.∵EA=EC,∴AF=FC=AC.∵AC=2AB,∴AF=AB.∵AD平分∠BAC,∴∠BAD=∠CAD.又∵AE=AE,∴△ABE≌△AFE(SAS),∴∠ABE=∠AFE=90°.∴EB⊥AB.
4.B
5.证明:如图,延长BA和CE交于点M.∵CE⊥BD,∴∠BEC=∠BEM=90°.∵BD平分∠ABC,∴∠MBE=∠CBE.又∵BE=BE,∴△BME≌△BCE(ASA),∴EM=EC=MC.∵△ABC是等腰直角三角形,∴∠BAC=∠MAC=90°,BA=AC,∴∠ABD+∠BDA=90°.∵∠BEC=90°,∴∠ACM+∠CDE=90°.∵∠BDA=∠EDC,∴∠ABE=∠ACM.又∵AB=AC,∴△ABD≌△ACM(ASA),∴DB=MC,∴BD=2CE.
6.证明:如图,连接CD.∵AC=BC,D是AB的中点,∴CD平分∠ACB,CD⊥AB,∴∠CDB=90°.∵∠ACB=90°,∴∠BCD=∠ACD=45°,∴∠B=180°-∠CDB-∠BCD=45°,∴∠ACD=∠B=∠BCD,∴CD=BD.∵ED⊥DF,∴∠EDF=∠EDC+∠CDF=90°.又∵∠CDF+∠BDF=90°,∴∠EDC=∠BDF,∴△ECD≌△FBD(ASA),∴DE=DF.
7.证明:如图,在线段BC上截取BE=BA,连接DE.∵BD平分∠ABC,∴∠ABD=∠EBD.又∵BD=BD,∴△ABD≌△EBD(SAS),∴∠BED=∠A=108°,∴∠DEC=180°-∠DEB=72°.又∵AB=AC,∠A=108°,∴∠ACB=∠ABC=×(180°-108°)=36°,∴∠CDE=∠DEB-∠ACB=180°-36°=72°,∴∠CDE=∠DEC,∴CD=CE,∴BC=BE+EC=AB+CD.
8.(1)证明:如图,过P作PF∥BC交AC于点F,∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD.∵△ABC为等边三角形,∴∠A=∠ACB=60°,∠AFP=60°,∴△APF是等边三角形,∴AP=PF.∵AP=CQ,∴PF=CQ,∴△PFD≌△QCD(ASA),∴PD=DQ.
(2)解:∵△APF是等边三角形,PE⊥AC,∴AE=EF.∵△PFD≌△QCD,∴CD=DF,∴DE=EF+DF=AC.又∵AC=1,∴DE=.
