最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

(完整word)高中数学数列知识点总结(经典),推荐文档

来源:动视网 责编:小OO 时间:2025-09-25 05:32:23
文档

(完整word)高中数学数列知识点总结(经典),推荐文档

数列基础知识点和方法归纳1.等差数列的定义与性质定义:(为常数),等差中项:成等差数列前项和性质:是等差数列(1)若,则(2)数列仍为等差数列,仍为等差数列,公差为;(3)若三个成等差数列,可设为(4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值.当,由可得达到最小值时的值.(6)项数为偶数的等差数列,有,.(7)项数为奇数的等差数列,有,,.2.等比数列的定义
推荐度:
导读数列基础知识点和方法归纳1.等差数列的定义与性质定义:(为常数),等差中项:成等差数列前项和性质:是等差数列(1)若,则(2)数列仍为等差数列,仍为等差数列,公差为;(3)若三个成等差数列,可设为(4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值.当,由可得达到最小值时的值.(6)项数为偶数的等差数列,有,.(7)项数为奇数的等差数列,有,,.2.等比数列的定义
数列基础知识点和方法归纳                      

1. 等差数列的定义与性质

定义:(为常数),

等差中项:成等差数列

前项和

性质:是等差数列

(1)若,则

(2)数列仍为等差数列,仍为等差数列,公差为;

(3)若三个成等差数列,可设为

(4)若是等差数列,且前项和分别为,则

(5)为等差数列(为常数,是关于的常数项为0的二次函数)

的最值可求二次函数的最值;或者求出中的正、负分界项,

即:当,解不等式组可得达到最大值时的值. 

当,由可得达到最小值时的值. 

(6)项数为偶数的等差数列,有

,.

(7)项数为奇数的等差数列,有

    ,.

2. 等比数列的定义与性质

定义:(为常数,),.

等比中项:成等比数列,或.

前项和:(要注意!)

性质:是等比数列

(1)若,则

(2)仍为等比数列,公比为.

注意:由求时应注意什么?

时,;

时,.

3.求数列通项公式的常用方法

(1)求差(商)法

如:数列,,求

解 时,,∴                                     ①

时,                             ②

①—②得:,∴,∴

[练习]数列满足,求

注意到,代入得;又,∴是等比数列,

时,

(2)叠乘法

 如:数列中,,求

解 ,∴又,∴.

(3)等差型递推公式

由,求,用迭加法

时,两边相加得

[练习]数列中,,求()

(4)等比型递推公式

(为常数,)

可转化为等比数列,设

令,∴,∴是首项为为公比的等比数列

∴,∴

(5)倒数法

如:,求

由已知得:,∴

∴为等差数列,,公差为,∴,

(

附:

公式法、利用、累加法、累乘法.构造等差或等比或、待定系数法、对数变换法、迭代法、数学归纳法、换元法

)

4. 求数列前n项和的常用方法

(1) 裂项法

把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 

如:是公差为的等差数列,求

解:由

[练习]求和:

(2)错位相减法

若为等差数列,为等比数列,求数列(差比数列)前项和,可由,求,其中为的公比. 

如:                                  ①

                          ②

①—②

时,,时,

(3)倒序相加法

把数列的各项顺序倒写,再与原来顺序的数列相加. 

相加

[练习]已知,则

      

∴原式

(附:

a.用倒序相加法求数列的前n项和

如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。

b.用公式法求数列的前n项和

对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

c.用裂项相消法求数列的前n项和

裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。

d.用错位相减法求数列的前n项和

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。

e.用迭加法求数列的前n项和

迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。

f.用分组求和法求数列的前n项和

所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

g.用构造法求数列的前n项和

所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。

)

                                                

文档

(完整word)高中数学数列知识点总结(经典),推荐文档

数列基础知识点和方法归纳1.等差数列的定义与性质定义:(为常数),等差中项:成等差数列前项和性质:是等差数列(1)若,则(2)数列仍为等差数列,仍为等差数列,公差为;(3)若三个成等差数列,可设为(4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值.当,由可得达到最小值时的值.(6)项数为偶数的等差数列,有,.(7)项数为奇数的等差数列,有,,.2.等比数列的定义
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top