考纲要求
考试内容8 | 要求层次 | |||||||
A | B | C | ||||||
导数及其应用 | 导数概念及其几何意义 | 导数的概念 | √ | △ | ||||
导数的几何意义 | √ | |||||||
导数的运算 | 根据导数定义求函数,,, 的导数 | √ | ||||||
导数的四则运算 | √ | |||||||
导数公式表◇ | √ | |||||||
导数在研究函数中的应用 | 利用导数研究函数的单调性(其中多项式函数不超过三次) | ☆ | √ | |||||
函数的极值、最值(其中多项式函数不超过三次) | ☆ | √ | ||||||
利用导数解决某些实际问题 | √ |
1.导数的几何意义:
函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为
2.、几种常见函数的导数
①;②; ③;④;
⑤;⑥; ⑦;⑧
3.导数的运算法则
(1). (2). (3).
4. 极值的判别方法:(极值是在附近所有的点,都有<,则是函数的极大值,极小值同理)
当函数在点处连续时,
①如果在附近的左侧>0,右侧<0,那么是极大值;
②如果在附近的左侧<0,右侧>0,那么是极小值.
也就是说是极值点的充分条件是点两侧导数异号,而不是=0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).
注①: 若点是可导函数的极值点,则=0. 但反过来不一定成立. 对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零.
例如:函数,使=0,但不是极值点.
②例如:函数,在点处不可导,但点是函数的极小值点.
极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.
5.导数与单调性
(1) 一般地,设函数 y = f ( x) 在某个区间可导,如果 f ′( x ) > 0 ,则 f ( x ) 为增函数;如果 f ′( x) < 0 ,则 f ( x) 为减函数;如果在某区间内恒有 f ′( x) = 0 ,则 f ( x) 为常数;
(2)对于可导函数 y = f ( x) 来说, f ′( x ) > 0 是 f ( x ) 在某个区间上为增函数的充分非必要 条件, f ′( x ) < 0 是 f ( x ) 在某个区间上为减函数的充分非必要条件;
(3)利用导数判断函数单调性的步骤:
①求函数 f ( x ) 的导数 f ′( x ) ;②令 f ′( x ) > 0 解不等式,得 x 的范围,就是递增区间;③令 f ′( x) < 0 解不等式,得 x 的范围,就是递增区间。