最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

等腰直角三角形 2

来源:动视网 责编:小OO 时间:2025-09-25 02:59:40
文档

等腰直角三角形 2

2013中考全国100份试卷分类汇编等腰直角三角形1、(2013•衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cmB.6cmC.cmD.cm考点:含30度角的直角三角形;等腰直角三角形.分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边
推荐度:
导读2013中考全国100份试卷分类汇编等腰直角三角形1、(2013•衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cmB.6cmC.cmD.cm考点:含30度角的直角三角形;等腰直角三角形.分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边
2013中考全国100份试卷分类汇编

等腰直角三角形

1、(2013•衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为(  )

 A.

3cm

B.

6cm

C.

cm

D.

cm

考点:

含30度角的直角三角形;等腰直角三角形.

分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.

解答:解:过点C作CD⊥AD,∴CD=3,

在直角三角形ADC中,

∵∠CAD=30°,

∴AC=2CD=2×3=6,

又三角板是有45°角的三角板,

∴AB=AC=6,

∴BC2=AB2+AC2=62+62=72,

∴BC=6,

故选:D.

点评:此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先由求得直角边,再由勾股定理求出最大边.

2、(2013•内江)已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.

考点:

全等三角形的判定与性质;等腰直角三角形.
专题:

证明题.
分析:根据等腰直角三角形的性质可得AC=BC,CD=CE,再根据同角的余角相等求出∠ACE=∠BCD,然后利用“边角边”证明△ACE和△BCD全等,然后根据全等三角形对应边相等即可证明.

解答:证明:∵△ABC和△ECD都是等腰直角三角形,

∴AC=BC,CD=CE,

∵∠ACD=∠DCE=90°,

∴∠ACE+∠ACD=∠BCD+∠ACD,

∴∠ACE=∠BCD,

在△ACE和△BCD中,,

∴△ACE≌△BCD(SAS),

∴BD=AE.

点评:本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.
3、(2013•常德压轴题)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.

(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;

(2)如图1,若CB=a,CE=2a,求BM,ME的长;

(3)如图2,当∠BCE=45°时,求证:BM=ME.

考点:

三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.3718684

分析:(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;

证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可,

(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;

解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;

(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;

证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.

解答:(1)证法一:

如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,

∴AB=BC=BD,

∴点B为线段AD的中点,

又∵点M为线段AF的中点,

∴BM为△ADF的中位线,

∴BM∥CF.

证法二:

如答图1b,延长BM交EF于D,

∵∠ABC=∠CEF=90°,

∴AB⊥CE,EF⊥CE,

∴AB∥EF,

∴∠BAM=∠DFM,

∵M是AF的中点,

∴AM=MF,

∵在△ABM和△FDM中,

∴△ABM≌△FDM(ASA),

∴AB=DF,

∵BE=CE﹣BC,DE=EF﹣DF,

∴BE=DE,

∴△BDE是等腰直角三角形,

∴∠EBM=45°,

∵在等腰直角△CEF中,∠ECF=45°,

∴∠EBM=∠ECF,

∴MB∥CF;

(2)解法一:

如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,

∴AB=BC=BD=a,AC=AD=a,

∴点B为AD中点,又点M为AF中点,

∴BM=DF.

分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,

∴CE=EF=GE=2a,CG=CF=a,

∴点E为FG中点,又点M为AF中点,

∴ME=AG.

∵CG=CF=a,CA=CD=a,

∴AG=DF=a,

∴BM=ME=×a=a.

解法二:

∵CB=a,CE=2a,

∴BE=CE﹣CB=2a﹣a=a,

∵△ABM≌△FDM,

∴BM=DM,

又∵△BED是等腰直角三角形,

∴△BEM是等腰直角三角形,

∴BM=ME=BE=a;

(3)证法一:

如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,

∴AB=BC=BD,AC=CD,

∴点B为AD中点,又点M为AF中点,∴BM=DF.

延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,

∴CE=EF=EG,CF=CG,

∴点E为FG中点,又点M为AF中点,∴ME=AG.

在△ACG与△DCF中,

∴△ACG≌△DCF(SAS),

∴DF=AG,

∴BM=ME.

证法二:

如答图3b,延长BM交CF于D,连接BE、DE,

∵∠BCE=45°,

∴∠ACD=45°×2+45°=135°

∴∠BAC+∠ACF=45°+135°=180°,

∴AB∥CF,

∴∠BAM=∠DFM,

∴M是AF的中点,

∴AM=FM,

在△ABM和△FDM中,,

∴△ABM≌△FDM(ASA),

∴AB=DF,BM=DM,

∴AB=BC=DF,

∵在△BCE和△DFE中,

∴△BCE≌△DFE(SAS),

∴BE=DE,∠BEC=∠DEF,

∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,

∴△BDE是等腰直角三角形,

又∵BM=DM,

∴BM=ME=BD,

故BM=ME.

点评:本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.
4、(2013•湖州)一节数学课后,老师布置了一道课后练习题:

如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于点O,点PD分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.

(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.

(2)特殊位置,证明结论

若PB平分∠ABO,其余条件不变.求证:AP=CD.

(3)知识迁移,探索新知

若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)

考点:

全等三角形的判定与性质.
分析:(1)求出∠3=∠4,∠BOP=∠PED=90°,根据AAS证△BPO≌△PDE即可;

(2)求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;

(3)设OP=CP=x,求出AP=3x,CD=x,即可得出答案.

解答:(1)证明:∵PB=PD,

∴∠2=∠PBD,

∵AB=BC,∠ABC=90°,

∴∠C=45°,

∵BO⊥AC,

∴∠1=45°,

∴∠1=∠C=45°,

∵∠3=∠PBO﹣∠1,∠4=∠2﹣∠C,

∴∠3=∠4,

∵BO⊥AC,DE⊥AC,

∴∠BOP=∠PED=90°,

在△BPO和△PDE中

∴△BPO≌△PDE(AAS);

(2)证明:由(1)可得:∠3=∠4,

∵BP平分∠ABO,

∴∠ABP=∠3,

∴∠ABP=∠4,

在△ABP和△CPD中

∴△ABP≌△CPD(AAS),

∴AP=CD.

(3)解:CD′与AP′的数量关系是CD′=AP′.

理由是:设OP=PC=x,则AO=OC=2x=BO,

则AP=2x+x=3x,

由(2)知BO=PE,

PE=2x,CE=2x﹣x=x,

∵∠E=90°,∠ECD=∠ACB=45°,

∴DE=x,由勾股定理得:CD=x,

即AP=3x,CD=x,

∴CD′与AP′的数量关系是CD′=AP′

点评:本题考查了全等三角形的性质和判定,等腰直角三角形性质,等腰三角形性质等知识点的综合应用,主要考查学生的推理和计算能力.

文档

等腰直角三角形 2

2013中考全国100份试卷分类汇编等腰直角三角形1、(2013•衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cmB.6cmC.cmD.cm考点:含30度角的直角三角形;等腰直角三角形.分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top