规律探究题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探究规律 .它体现了“从特殊到一般(再到特殊)”数学思想方法,考查分析、解决问题的能力和观察、联想、归纳能力,以及探究能力和创新能力.规律探究题问题常以填空题、选择题的压轴题形式出现.
一、探究数字或算式的变化规律
1. 计算++++…+的结果是( )
A. B. C. D.
2.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是( )
A.0 B.1 C.7 D.8
3.将正整数1至2 018按一定规律排列如下表:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
… |
A.2 019 B.2 018 C.2 016 D.2 013
4.已知2+=22×,3+=32×,4+=42×,5+=52×…若10+=102×符合前面式子的规律,则a+b=________.
5.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是( )
A.2S2-S B.2S2+S C.2S2-2S D.2S2-2S-2
6.观察“田”字中各数之间的关系:
1 | 2 |
2 | 3 |
3 | 6 |
4 | 7 |
5 | 12 |
8 | 13 |
7 | 22 |
16 | 23 |
9 | 40 |
32 | 41 |
11 | 74 |
75 |
15 | c |
a | b |
7.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是________.
8.下表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,……,第n个数记为an,则a4+a200=________.
9. 我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是________.
10.(2019·安徽)观察以下等式 :
第 1个等式 :=+,
第 2个等式 :=+,
第 3个等式 :=+,
第 4个等式 :=+,
第 5个等式 :=+,
……
按照以上规律,解决下列问题:
(1)写出第 6个等式: ________________;
(2)写出你猜想的第 n个等式: ________________(用含 n的等式表示 ),并证明.
11.观察下列一组数:
a1=,a2=,a3=,a4=,a5=,…,
它们是按一定规律排列的,请利用其中规律,写出第n个数an=________(用含n的式子表示).
二、探究图形的变化规律
1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )
2.如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为( )
A.28 B.29 C.30 D.31
3.我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为( )
A.33 B.301 C.386 D.571
4.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2 020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2 020次移动中,跳棋不可能停留的顶点是( )
A.C,E B.E,F C.G,C,E D.E,C,F
5.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,依此类推,这样连续旋转2 017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为( )
A.2 017π B.2 034π C.3 024π D.3 026π
6.每一层三角形的个数与层数的关系如图所示,则第2 018层的三角形个数为________.
7.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=________.
第1幅 第2幅 第3幅 第n幅
8.如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.
,图1),图2),图3)
如图1,当CD=AC时,tan α1=;
如图2,当CD=AC时,tan α2=;
如图3,当CD=AC时,tan α3=;
……
……
……
依次类推,当CD=AC(n为正整数)时,tan αn=__________.
9.如图,在△ABC中,AB=5,AC=4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、…;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;过点D2作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=________.
三、探究坐标的变化规律
1.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An,则点A2019的坐标是( )
A.(1010,0) B.(1010,1) C.(1009,0) D.(1009,1)
2.我们把1,1,2,3,5,8,13,21…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,…得到斐波那契螺旋线,然后顺次连接P1P2,P2P3,P3P4…得到螺旋折线(如图),已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上的点P9的坐标为( )
A.(-6,24) B.(-6,25) C.(-5,24) D.(-5,25)
3.如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为_______________.
4.如图,在平面直角坐标系中,函数y=x和y=-x的图象分别为直线l1,l2,过点A1作x轴的垂线交l1于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5……依次进行下去,则点A2 018的横坐标为________.
5.如图所示,在平面直角坐标系xOy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合.若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与ln在第一象限内交于点Pn,则点Pn的坐标为____________.(n为正整数)
6.如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6…在反比例函数y=-(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则An(n为正整数)的纵坐标为______________________________________.(用含n的式子表示)
7.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,…在直线l上,点C1,C2,C3,C4,…在x轴正半轴上,则前n个正方形对角线长的和是____________.
参
一、探究数字或算式的变化规律
1.B 2.A 3.D 4. 109 5. A 6. 270(或28+14) 7. 2 018 8. 20110 9. 4
10.(1)=+ (2)=+
证明:∵右边=+===左边.∴等式成立 .
11.
二、探究图形的变化规律
1. D 2.C 3. C 4. D 5. D 6. 4 035 7. 1 010 8. 9. 40 380
三、探究坐标的变化规律
1.C 2.B 3. (-22 017,22 017) 4. 21 008
5. (n,)
6. (-1)n+1(-)或
7. (2n-1)