1.如图,点A、B都在数轴上,O为原点.
(1)线段AB中点表示的数是 ;
(2)若点B以每秒3个单位长度的速度沿数轴向右运动了t秒,当点B在点O左边时,OB= ,当点B至点O右边时,OB= ;
(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.
2.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.
(1)写出A、B对应的数;
(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).
①求点M、N对应的数(含t的式);
②x为何值时OM=2BN.
3.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题
(1)请直接写出a、b、c的值.
a= ,b= ,c=
(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
4.如图,数轴上A,B,C三点对应的数分别是a,b,14,满足BC=6,AC=3BC.动点P从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.
(1)则a= ,b= .
(2)当P点运动到数2的位置时,Q点对应的数是多少?
(3)是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.
5.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1
(1)A、B对应的数分别为 、 ;
(2)点A、B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A、B相距1个单位长度?
(3)动点P从点A出发,沿数轴正方向运动,M为线段AP的中点,N为线段PB的中点.在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.
6.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为﹣10.点B表示的数为6,点C为线段AB的中点.
(1)数轴上点C表示的数是 ;
(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为:t(t>0)秒.
①当t为何值时,点O恰好是PQ的中点;
②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(是把一条线段平均分成三等分的点).(直接写出结果)
7.【新知理解】如图①,点C在线段AB上,图中有三条线段AB、AC和BC.若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.
(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”);
【问题解决】(2)如图②,点A和B在数轴上表示的数分别是﹣20和40,点C是线段AB的巧点,求点C在数轴上表示的数.
【应用拓展】(3)在(2)的条件下,动点P从点A发,以每秒2个单位的速度沿AB向点B匀速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中一点到达终点时,两个点运动同时停止.当A、P、Q三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间t(s)的所有可能取值.
8.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:
(1)请直接写出a、b、c的值.a= ,b= ,c= ;
(2)数轴上a、b、c三个数所对应的点分别为A、B、C,此时,A与B两点间的距离为 个单位长度;
(3)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.
①t秒钟过后,AC的长度为 (用t的关系式表示即可);
②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
9.已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题
(1)请直接写出a、b、c的值.a= ,b= ,c=
(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
10.已知数轴上两点A、B对应的数分别为a和b,且满足|a+4|+(b﹣3)2=0,点M为数轴上一动点,请回答下列问题:
(1)请直接写出a、b的值,并画出图形;
(2)点M为数轴上一动点,点A、B不动,问线段BM与AM的差即BM﹣AM的值是否一定发生变化?请回答.
(3)设点A以每秒x个单位向左运动,点M从表示y数的点以每秒x个单位向左运动,点B以每秒y个单位向右运动t秒后
①A、B、M三点分别表示什么数(用x、y、t表示);
②线段BM与AM的差即BM﹣AM的值是否一定发生变化?请回答,并说明理由.
参
1.解:(1)线段AB中点表示的数是:=﹣1.
故答案是:﹣1;
(2)当点B在点O左边时,OB=4﹣3t,当点B至点O右边时,OB=3t﹣4;
故答案是:4﹣3t,3t﹣4;
(3)①当点O是线段AB的中点时,OB=OA
4﹣3t=2+t
t=0.5
②当点B是线段OA的中点时,OA=2OB
2+t=2(3t﹣4)
t=2;
③当点A是线段OB的中点时,OB=2OA
3t﹣4=2(2+t)
t=8.
综上所述,符合条件的t的值是0.5,2或8.
2.解:(1)∵C表示的数为6,BC=4,
∴OB=6﹣4=2,
∴B点表示2.
∵AB=12,
∴AO=12﹣2=10,
∴A点表示﹣10.
故点A对应的数是﹣10,点B对应的数是2;
(2)①AP=6t,CQ=3t,如图1所示:
∵M为AP的中点,N在CQ上,且CN=CQ,
∴AM=AP=3t,CN=CQ=t,
∵点A表示的数是﹣10,点C表示的数是6,
∴点M表示的数是﹣10+3t,点N表示的数是6+t;
②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,
∴|﹣10+3t|=2(4+t)=8+2t,
∴﹣10+3t=±(8+2t),
当﹣10+3t=8+2t时,t=18;
当﹣10+3t=﹣(8+2t)时,t=.
∴当t=18或t=时,OM=2BN.
3.解:(1)∵b是最小的正整数,∴b=1.
根据题意得:c﹣5=0且a+b=0,
∴a=﹣1,b=1,c=5.
故答案是:﹣1;1;5;
(2)当0≤x≤1时,x+1>0,x﹣1≤0,x+5>0,
则:|x+1|﹣|x﹣1|+2|x+5|
=x+1﹣(1﹣x)+2(x+5)
=x+1﹣1+x+2x+10
=4x+10;
当1<x≤2时,x+1>0,x﹣1>0,x+5>0.
∴|x+1|﹣|x﹣1|+2|x+5|=x+1﹣(x﹣1)+2(x+5)
=x+1﹣x+1+2x+10
=2x+12;
(3)不变.理由如下:
t秒时,点A对应的数为﹣1﹣t,点B对应的数为2t+1,点C对应的数为5t+5.
∴BC=(5t+5)﹣(2t+1)=3t+4,AB=(2t+1)﹣(﹣1﹣t)=3t+2,
∴BC﹣AB=(3t+4)﹣(3t+2)=2,
即BC﹣AB值的不随着时间t的变化而改变.
(另解)∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,
∴A、B之间的距离每秒钟增加3个单位长度;
∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,
∴B、C之间的距离每秒钟增加3个单位长度.
又∵BC﹣AB=2,
∴BC﹣AB的值不随着时间t的变化而改变.
4.解:(1)∵c=14,BC=6,
∴b=14﹣6=8;
∵AC=3BC,
∴AC=18,
∴a=14﹣18=﹣4;
(2)[2﹣(﹣4)]÷2=3(秒),
14﹣1×3=11.
故Q点对应的数是11;
(3)P在C点的左边,则18﹣2t=t,
解得t=6;
P在C点的右边,则2t﹣18=t,
解得t=18.
综上所述,t的值为6或18.
故答案为:6;18.
5.解:(1)设OA=2x,则OB=x,
由题意得,2x+x=15,
解得,x=5,
则OA=10、OB=5,
∴A、B对应的数分别为﹣10、5,
故答案为:﹣10;5;
(2)设x秒后A、B相距1个单位长度,
当点A在点B的左侧时,4x+3x=15﹣1,
解得,x=2,
当点A在点B的右侧时,4x+3x=15+1,
解得,x=,
答:2或秒后A、B相距1个单位长度;
(3)在点P运动的过程中,线段MN的长度不发生变化,
分两种情况:
①当P在点B的左侧时,如图1,
∵M为线段AP的中点,N为线段PB的中点,
∴PM=AP,PN=PB,
∴MN=PM+PN=AP+PB=AB=;
②当P在点B的右侧时,如图2,
同理得:PM=AP,PN=PB,
∴MN=PM﹣PN=AP﹣PB=AB=;
综上,在点P运动的过程中,线段MN的长度不发生变化,AB=.
6.解:(1)因为点A表示的数为﹣10.点B表示的数为6,
所以AB=6﹣(﹣10)=16.
因为点C是AB的中点,
所以AC=BC=AB=8
所以点C表示的数为﹣10+8=﹣2
故答案为:﹣2;
(2)①设t秒后点O恰好是PQ的中点.
由题意,得10﹣2t=6﹣t
解得,t=4;
即4秒时,点O恰好是PQ的中点.
②当点C为PQ的三等分点时PC=2QC或QC=2PC,
∵PC=8﹣2t,QC=8﹣t,
所以8﹣2t=2(8﹣t)或8﹣t=2(8﹣2t)
解得t=;
当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC
∵PC=2t﹣8,PQ=16﹣3t
∴2t﹣8=2(16﹣3t)或16﹣3t=2(2t﹣8)
解得t=5或t=;
当点Q为CP的三等分点时PQ=2CQ或QC=2PQ
∵PQ=3t﹣16,QC=8﹣t
∴3t﹣16=2(8﹣t)或8﹣t=2(3t﹣16)
解得t=或t=.
综上,t=,5,,,秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点.
7.解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,
故答案为:是;
(2)设C点表示的数为x,则AC=x+20,BC=40﹣x,AB=40+20=60,
根据“巧点”的定义可知:
①当AB=2AC时,有60=2(x+20),
解得,x=10;
②当BC=2AC时,有40﹣x=2(x+20),
解得,x=0;
③当AC=2BC时,有x+20=2(40﹣x),
解得,x=20.
综上,C点表示的数为10或0或20;
(3)由题意得,AP=2t,AQ=60﹣4t,
PQ=,
i)若0≤t≤10时,点P为AQ的“巧点”,有
①当AQ=2AP时,60﹣4t=2×2t,
解得,t=;
②当PQ=2AP时,60﹣6t=2×2t,
解得,t=6;
③当AP=2PQ时,2t=2(60﹣6t),
解得,t=;
ii)若10<t≤15时,点Q为AP的“巧点”,有
①当AP=2AQ时,2t=2×(60﹣4t),
解得,t=12;
②当PQ=2AQ时,6t﹣60=2×(60﹣4t),
解得,t=;
③当AQ=2PQ时,60﹣4t=2(6t﹣60),
解得,t=.
综上,所求运动时间t(s)的所有可能取值为,6,,12,,.
8.解:(1)∵b是最小的正整数,
∴b=1.
∵(c﹣5)2+|a+b|=0,
∴,
∴a=﹣1,b=1,c=5.
故答案为:a=﹣1,b=1,c=5;
(2)AB=1﹣(﹣1)=2,
故AB的长为2个单位;
(3)①由题意,得
t秒钟过后A点表示的数为:﹣1﹣t,C点表示的数为:5+3t,
∴AC=5+3t﹣(﹣1﹣t)=6+4t;
故答案为:6+4t;
②由题意,得
BC=4+2t,AB=2+2t,
∴BC﹣AB=4+2t﹣(2+2t)=2.
∴BC﹣AB的值是不随着时间t的变化而改变,其值为2.
9.解:(1)∵b是最小的正整数,
∴b=1,
∵(c﹣6)2+|a+b|=0,(c﹣6)2≥0,|a+b|≥0,
∴c=6,a=﹣1,b=1,
故答案为﹣1,1,6.
(2)由题意﹣1<x<1,
∴|x+1|﹣|x﹣1|﹣2|x+5|=x+1+x﹣1﹣2x﹣10=﹣10.
(3)不变,由题意BC=5+5nt﹣2nt=5+3nt,AB=nt+2+2nt=2+3nt,
∴BC﹣AB=(5+3nt)﹣(2+3nt)=3,
∴BC﹣AB的值不变,BC﹣AB=3.
10.解:(1)如图1,由题意得:a+4=0,b﹣3=0,
则a=﹣4,b=3;
(2)线段BM与AM的差即BM﹣AM的值发生变化,理由是:
设点M对应的数为c,
由BM=|c﹣b|,AM=|c﹣a|,
则分三种情况:①当点M在点B的右侧时,如图2,BM﹣AM=c﹣b﹣c+a=a﹣b=﹣4﹣3=﹣7,
②当点M在点A与B之间时,BM﹣AM=b﹣c﹣c+a=a+b﹣2c=﹣4+3﹣2c=﹣1﹣2c,
③当点M在点A的左侧时,BM﹣AM=b﹣c﹣a+c=b﹣a=3+4=7,
(3)①点A表示的数为:﹣4﹣tx;点B表示的数为:3+yt;点M表示的数为:y﹣tx;
②线段BM与AM的差即BM﹣AM的值一定发生变化,理由是:
∵y>0,
∴M不能在A的左侧,
所以分二种情况:
i)当点M在点B的右侧时,如图2,BM﹣AM=﹣AB=﹣(3+yt+4+tx)=﹣7﹣yt﹣tx,
ii)当点M在点A与B之间时,如图3,BM﹣AM=3+yt﹣y+tx﹣(y﹣tx+4+tx)=﹣1﹣2y+tx+yt,