一、高中物理精讲专题测试万有引力与航天
1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:
(1)该星球表面的重力加速度; (2)该星球的质量。
【答案】(1)02tan v g t θ=
(2)202tan v R Gt
θ
【解析】 【分析】
平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】
(1)根据平抛运动知识可得
2
00
122gt y gt tan x v t v α===
解得02v tan g t
α
=
(2)根据万有引力等于重力,则有
2
GMm
mg R = 解得2202v R tan gR M G Gt
α
==
2.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .
(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;
(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.
【答案】(1)2π=T ω;(2)2
312=4GMT h R π
- (3)h 1= h 2 【解析】 【分析】
(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】
(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T
ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:2
1
212π=()()()Mm G
m R h R h T
++ 解得:2
312
=4π
GMT
h R -
(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,2
22
22=()()()Mm G
m R h R h T
π++ 解得:2
322
4GMT
h R π
因此h 1= h 2.
故本题答案是:(1)2π=T ω;(2)2
312=4GMT
h R π
- (3)h 1= h 2 【点睛】
对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.
3.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)
(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.
【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】
(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =
又有:sin cos mg mg ma θμθ+= 解得:2
7.5m/s g =
(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:
2
mv mg R
= 3310m/s v gR ==⨯
4.地球同步卫星,在通讯、导航等方面起到重要作用。已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求: (1)地球的质量M ;
(2)同步卫星距离地面的高度h 。
【答案】(1) (2)
【解析】 【详解】
(1)地球表面的物体受到的重力等于万有引力,即:mg=G
解得地球质量为:M=
;
(2)同步卫星绕地球做圆周运动的周期等于地球自转周期T ,同步卫星做圆周运动,万有
引力提供向心力,由牛顿第二定律得:
解得:;
【点睛】
本题考查了万有引力定律的应用,知道地球表面的物体受到的重力等于万有引力,知道同步卫星的周期等于地球自转周期、万有引力提供向心力是解题的前提,应用万有引力公式与牛顿第二定律可以解题.
5.2019年4月20日22时41分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。卫星的质量为m ,地球的半径为R ,地球表面的重力加速度大小为g ,不计地球自转的影响。求:
(1)卫星进入轨道后的加速度大小g r ; (2)卫星的动能E k 。
【答案】(1)2
2gR r
(2)22mgR r
【解析】 【详解】
(1)设地球的质量为M ,对在地球表面质量为m '的物体,有:2
Mm G m g R
'
'= 对卫星,有:r 2
Mm
G
mg r = 解得:2
r 2g gR r
=
(2)万有引力提供卫星做匀速圆周运动所需的向心力,有:2
2Mm v G m r r
=
卫星的动能为:2
k 12
E mv =
解得:2
k 2mgR E r
=
6.2004年1月,我国月球探测计划“嫦娥工程”正式启动,从此科学家对月球的探索越来越深入.2007年我国发射了“嫦娥1号”探月卫星,2010年又发射了探月卫星“嫦娥二号”,2013年“嫦娥三号”成功携带“玉兔号月球车”登上月球.已知地球半径为R ,地球表面
的重力加速度为g ,月球绕地球运动的周期为T ,月球绕地球的运动近似看做匀速圆周运动.万有引力常量为G . (1)求出地球的质量;
(2)求出月球绕地球运动的轨道半径;
(3)若已知月球半径为r ,月球表面的重力加速度为
6
g
.当将来的嫦娥探测器登陆月球以后,若要在月球上发射一颗月球的卫星,最小的发射速度为多少?
【答案】(1)2gR G (23 【解析】 【详解】
(1)在地球表面,由
2
GMm
mg R
= 解得地球的质量
G
gR M 2
= (2)月球绕地球运动,万有引力提供向心力,则有
222
4GMm m r
r T
π= 月球绕地球运动的轨道半径
r ==(3)在月球表面,则有
26g v m m r
= 解得
v =
7.2018年12月08日凌晨2时23分,我国在西昌卫星发射中心用长征三号乙运载火箭成功发射嫦娥四号探测器,开启了月球探测的新旅程。嫦娥四号探测器后续将经历地月转移、近月制动、环月飞行,最终实现人类首次月球背面软着陆。设环月飞行阶段嫦娥四号探测器在靠近月球表面的轨道上做匀速圆周运动,经过t 秒运动了N 圈,已知该月球的半径为R ,引力常量为G ,求: (1)探测器在此轨道上运动的周期T ; (2)月球的质量M ;
(3)月球表面的重力加速度g 。
【答案】(1)t T N = (2)22324N R M Gt π= (3)222
4N R
g t
π= 【解析】 【详解】
(1)探测器在轨道上运动的周期t T N
=
; (2)根据2
224mM G m R R T
π=得,
行星的质量223
2
4N R M Gt
π=; (3)根据万有引力等于重力得,2
mM
G
mg R =, 解得222
4N R
g t π=
8.如图所示,为发射卫星的轨道示意图.先将卫星发射到半径为r 的圆轨道上,卫星做匀速圆周运动.当卫星运动到A 点时,使卫星加速进入椭圆轨道.沿椭圆轨道运动到远地点B 时,再次改变卫星的速度,使卫星入半径为3r 0的圆轨道做匀速圆周运动.已知卫星在椭圆轨道时,距地心的距离与速度的乘积为定值,卫星在椭圆轨道上的A 点时的速度大小为v ,卫星的质量为m ,地球的质量为M ,万有引力常量为G ,则:
(1)卫星在两个圆形轨道上的运行速度分别多大? (2)卫星在B 点变速时增加了多少动能?
【答案】(10GM r 03GM r (2)2
0618
GMm mv r -
【解析】 【分析】 【详解】
(1)做匀速圆周运动的卫星,所受万有引力提供向心力,得:
2
2Mm v G m r r
=, 当r =r 0时,v 1
, 当r =3r 0时,v 2
, (2)设卫星在椭圆轨道远地点B 的速度为v B ,据题意有:r 0v =3r 0v B 卫星在B 点变速时增加的动能为△E k =
2221122B mv mv -, 联立解得:△E k =2
0618
GMm mv r -
9.假设在宇航员登月前用弹簧秤称量一只砝码,成功登陆月球表面后,还用这一弹簧秤称量同一砝码,发现弹簧秤在月球上的示数是在地球上示数的k(k<1)倍,已知月球半径为R ,引力常量为G ,地球表面的重力加速度大小为g ,求:
(1)月球的密度;
(2)月球的第一宇宙速度和月球卫星的最小周期。
【答案】(1)
34gk GR π;(2
2 【解析】
【详解】
(1)在地面上1F mg = 在月球表面上22GMm F R =
月球的质量343M R πρ=
由于21
F k F = 解得月球密度34gk GR
ρπ= (2)当卫星环绕月球表面飞行时的速度为第一宇宙速度,周期最小,设月球的第一宇宙速度为v ,近月卫星的周期为T ,则
2
2mv F R
= 1F mg =
2R T v
π=
解得v
22R T v π==
10.假如你乘坐我国自行研制的、代表世界领先水平的神州X 号宇宙飞船,通过长途旅行,目睹了美丽的火星,为了熟悉火星的环境,飞船绕火星做匀速圆周运动,离火星表面的高度为H ,测得飞行n 圈所用的时间为t ,已知火星半径为R ,引力常量为G ,求:
(1)神舟X 号宇宙飞船绕火星的周期T ;
(2)火星表面重力加速度g .
【答案】(1)t T n = (2)()322224n R H g R t
π+= 【解析】
(1)神舟X 号宇宙飞船绕火星的周期t T n =
(2)根据万有引力定律()()2224Mm
G m R H T
R H π=++, 2
Mm G mg R = 解得()
322224n R H g R t π+=
【点睛】本题考查了万有引力定律的应用,考查了求重力加速度、第一宇宙速度问题,知道万有引力等于重力、万有引力提供向心力是解题的前提与关键,应用万有引力公式与牛顿第二定律可以解题.