最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2014高考数学选择题专项训练及答案解析

来源:动视网 责编:小OO 时间:2025-09-23 19:22:02
文档

2014高考数学选择题专项训练及答案解析

高考数学选择题专项训练(一)1、同时满足①M{1,2,3,4,5};②若a∈M,则(6-a)∈M,的非空集合M有()。(A)16个(B)15个(C)7个(D)8个2、函数y=f(x)是R上的增函数,则a+b>0是f(a)+f(b)>f(-a)+f(-b)的()条件。(A)充分不必要(B)必要不充分(C)充要(D)不充分不必要3、函数g(x)=x2,若a≠0且a∈R,则下列点一定在函数y=g(x)的图象上的是()。(A)(-a,-g(-a))(B)(a,g(-a))(C)(a,-g(a))(D)
推荐度:
导读高考数学选择题专项训练(一)1、同时满足①M{1,2,3,4,5};②若a∈M,则(6-a)∈M,的非空集合M有()。(A)16个(B)15个(C)7个(D)8个2、函数y=f(x)是R上的增函数,则a+b>0是f(a)+f(b)>f(-a)+f(-b)的()条件。(A)充分不必要(B)必要不充分(C)充要(D)不充分不必要3、函数g(x)=x2,若a≠0且a∈R,则下列点一定在函数y=g(x)的图象上的是()。(A)(-a,-g(-a))(B)(a,g(-a))(C)(a,-g(a))(D)
  高考数学选择题专项训练(一)

1、同时满足① M {1, 2, 3, 4, 5}; ② 若a ∈M,则(6-a)∈M, 的非空集合M有(    )。

  (A)16个   (B)15个   (C)7个   (D)8个

2、函数y=f (x)是R上的增函数,则a+b>0是f (a)+f (b)>f (-a)+f (-b)的(  )条件。

  (A)充分不必要   (B)必要不充分   (C)充要   (D)不充分不必要

3、函数g(x)=x2,若a≠0且a∈R, 则下列点一定在函数y=g(x)的图象上的是(    )。

  (A)(-a, -g(-a))   (B)(a, g(-a))   (C)(a, -g(a))   (D)(-a, -g(a))

4、数列{an}满足a1=1, a2=,且(n≥2),则an等于(   )。

  (A)   (B)()n-1   (C)()n   (D)

5、由1,2,3,4组成的没有重复数字的四位数,按从小到大的顺序排成一个数列{an},其中a18等于(    )。

  (A)1243   (B)3421   (C)4123   (D)3412

6、已知圆锥内有一个内接圆柱,若圆柱的侧面积最大,则此圆柱的上底面将已知圆锥的体积分成小、大两部分的比是(    )。

  (A)1:1   (B)1:2   (C)1:8   (D)1:7

7、直线4x+6y-9=0夹在两坐标轴之间的线段的垂直平分线是l,则l的方程是(   )。

(A)24x-16y+15=0  (B)24x-16y-15=0  (C)24x+16y+15=0  (D)24x+16y-15=0

8、函数f (x)=loga(ax2-x)在x∈[2, 4]上是增函数,则a的取值范围是(   )。

  (A)a>1   (B)a>0且a≠1   (C)09、函数y=f (x)的反函数f -1(x)= (x∈R且x≠-3),则y=f (x)的图象(   )。

  (A)关于点(2, 3)对称        (B)关于点(-2, -3)对称

  (C)关于直线y=3对称    (D)关于直线x=-2对称

10、两条曲线|y|=与x = -的交点坐标是(    )。

  (A)(-1, -1)   (B)(0, 0)和(-1, -1)  

 (C)(-1, 1)和(0, 0)   (D)(1, -1)和(0, 0)

11、已知a, b∈R, m=, n=-b+b2,则下列结论正确的是(   )。

  (A)mn   (D)m≤n

12、若a, b∈R,那么成立的一个充分非必要条件是(   )。

  (A)a>b   (B)ab(a-b)<0   (C)a

题号  1 2 3 4 5 6 7 8 9 10 11 12
答案 A C D A B D B A BB D C
  高考数学选择题专项训练(二)

1、函数y=cos4x-sin4x图象的一条对称轴方程是(    )。

  (A)x=-   (B)x=-   (C)x=   (D)x=

2、已知l、m、n为两两垂直且异面的三条直线,过l作平面α与m垂直,则直线n与平面α的关系是(   )。

  (A)n//α                  (B)n//α或nα   

(C)nα或n不平行于α   (D)nα

3、已知a、b、c成等比数列,a、x、b和b、y、c都成等差数列,且xy≠0,那么的值为(   )。

  (A)1   (B)2   (C)3   (D)4

4、如果在区间[1, 3]上,函数f (x)=x2+px+q与g(x)=x+在同一点取得相同的最小值,那么下列说法不对的是(    )。

  (A)f (x)≥3 (x∈[1, 2])          (B)f (x)≤4 (x∈[1, 2])  

  (C)f (x)在x∈[1, 2]上单调递增 (D)f (x)在x∈[1, 2]上是减函数

5、在(2+)100展开式中,有理数的项共有(   )。

  (A)4项   (B)6项   (C)25项   (D)26项

6、等比数列{an}的公比q<0,前n项和为Sn, Tn=,则有(   )。

  (A)T1T9   (D)大小不定

7、设集合A=,集合B={0},则下列关系中正确的是(   )

   (A)A=B  (B)AB    (C)AB    (D)AB  

8、已知直线l过点M(-1,0),并且斜率为1,则直线l的方程是(   )

(A)x+y+1=0  (B)x-y+1=0  

(C)x+y-1=0   (D)x―y―1=0

9、已知集合A={整数},B={非负整数},f是从集合A到集合B的映射,且f:x y=x2(x∈A,y∈B),那么在f的作用下象是4的原象是(   )

   (A)16  (B)±16  (C)2  (D)±2

10、已知函数y=,那么(   )

  (A)当x∈(-∞,1)或x∈(1,+∞)时,函数单调递减

  (B)当x∈(-∞,1)∪(1,+∞)时,函数单调递增

  (C)当x∈(-∞,-1)∪(-1,+∞)时,函数单调递减

  (D)当x∈(-∞,-1)∪(-1,+∞)时,函数单调递增

11、在(2-)8的展开式中,第七项是(   )

   (A)112x3  (B)-112x3  (C)16x3  (D)-16x3  

12、设A={x| x2+px+q=0},B={x| x2+(p-1)x+2q=0},

若A∩B={1},则(   )。

(A)AB           (B)AB  

(C)A∪B ={1, 1, 2} (D)A∪B=(1,-2)

题号  1 2 3 4 5 6 7 8 9 10 11 12
答案 A A B C D A C B DA A A
  高考数学选择题专项训练(三)

1、已知函数f(x)在定义域R内是减函数且f(x)<0,则函数

g(x)=x2 f(x)的单调情况一定是(   )。

   (A)在R上递减                 (B)在R上递增   

   (C)在(0,+∞)上递减        (D)在(0,+∞)上递增  

2、α,β是两个不重合的平面,在α上取4个点,在β上取3个点,则由这些点最多可以确定平面(   )。

   (A)35个  (B)30个  (C)32个  (D)40个

3、已知定点P1(3,5),P2(-1,1),Q(4,0),点P分有向线段所成的比为3,则直线PQ的方程是(   )。

(A)x+2y-4=0  (B)2x+y-8=0  

(C)x-2y-4=0  (D)2x-y-8=0

4、函数y=x在[-1, 1]上是(   )。

  (A)增函数且是奇函数   (B)增函数且是偶函数

  (C)减函数且是奇函数   (D)减函数且是偶函数

5、方程cosx=lgx的实根的个数是(   )。

  (A)1个   (B)2个   (C)3个   (D)4个

6、一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是(   )。

  (A)-2   (B)-3   (C)-4   (D)-5

7、已知椭圆(a>b>0)的离心率等于,若将这个椭圆绕着它的右焦点按逆时针方向旋转后,所得的新椭圆的一条准线的方程y=,则原来的椭圆方程是(   )。

  (A)  (B)  (C)  (D)

8、直线x-y-1=0与实轴在y轴上的双曲线x2-y2=m (m≠0)的交点在以原点为中心,边长为2且各边分别平行于坐标轴的正方形内部,则m的取值范围是(   )。

  (A)09、已知直线l1与l2的夹角的平分线为y=x,如果l1的方程是

ax+by+c=0(ab>0),那么l2的方程是(   )。

  (A)bx+ay+c=0   (B)ax-by+c=0   

(C)bx+ay-c=0   (D)bx-ay+c=0

10、函数F(x)=(1+)f (x) (x≠0)是偶函数,且f (x)不恒等于零,则f (x)(   )。

  (A)是奇函数      (B)可能是奇函数,也可能是偶函数

  (C)是偶函数      (D)非奇、非偶函数

11、若loga2  (A)0b>1   (D)b>a>1

12、已知等差数列{an}的公差d≠0,且a1, a3, a9成等比数列,则的值是(    )。

  (A)   (B)   (C)   (D)

题号  1 2 3 4 5 6 7 8 9 10 11 12
答案 C C AC C C C C AA B C
  高考数学选择题专项训练(四)

1、已知集合Z={θ| cosθ  (A)(, π)   (B)(,)   (C)(π,)   (D)(,)

2、如果直线y=ax+2与直线y=3x+b关于直线y=x对称,那么(   )。

  (A)a=, b=6   (B)a=, b=-6   

(C)a=3, b=-2   (D)a=3, b=6

3、已知f()=,则f (x)=(   )。

 (A)(x+1)2   (B)(x-1)2   (C)x2-x+1   (D)x2+x+1

4、若函数f (x)=的定义域是R,则实数k的取值范围是(   )。

  (A)[0,]   (B)(-∞, 0)∪(, +∞)   

(C)[0,]   (D)[, +∞]

5、设P是棱长相等的四面体内任意一点,则P到各个面的距离之和是一个定值,这个定值等于(   )。

  (A)四面体的棱长      (B)四面体的斜高

  (C)四面体的高        (D)四面体两对棱间的距离

6、过定点(1, 3)可作两条直线与圆x2+y2+2kx+2y+k2-24=0相切,则k的取值范围是(   )。

  (A)k>2   (B)k<-4   (C)k>2或k<-4   (D)-47、设a, b是满足ab<0的实数,那么(   )。

    (A)|a+b|>|a-b|      (B)|a+b|<|a-b|  

  (C)|a-b|<||a|-|b||    (D)|a-b|<|a|+|b|

8、如果AC<0且BC<0, 那么直线Ax+By+C=0不通过(   )。

  (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

9、直线的倾斜角是(   )。

  (A)20°   (B)70°   (C)110°   (D)160°

10、函数y=sinxcosx+sinx+cosx的最大值是(   )。

  (A)   (B)   (C)1+   (D)+

11、在△ABC中,A>B是cos2B>cos2C的(   )。

  (A)非充分非必要条件   (B)充分非必要条件

  (C)必要非充分条件     (D)充要条件

12、直线xcosθ-y+1=0的倾斜角的范围是(   )。

  (A)[-,]          (B)[,] 

  (C)(0,)∪(, π)   (D)[0,]∪[, π]

题号  1 2 3 4 5 6 7 8 9 10 11 12
答案 A B CA C C B C CD A D
  高考数学选择题专项训练(五)

1、在四棱锥的四个侧面中,直角三角形最多可有(   )。

  (A)1个   (B)2个   (C)3个   (D)4个

2、函数y=的值域是(   )。

  (A){-2, 4}         (B){-2, 0, 4}  

(C){-2, 0, 2, 4}     (D){-4, -2, 0, 4}

3、若正棱锥的底面边长与侧棱相等,则该棱锥一定不是(   )。

  (A)三棱锥   (B)四棱锥  (C)五棱锥  (D)六棱锥

4、四边形ABCD是边长为1的正方形,E、F为BC、CD的中点,沿AE、EF、AF折成一个四面体,使B、C、D三点重合,这个四面体的体积为(   )。

  (A)   (B)   (C)   (D)

5、一束光线从点A(-1, 1)出发经x轴反射,到达圆C:

(x-2)2+(y-3)2=1上一点的最短路程是(   )。

  (A)4   (B)5   (C)3-1   (D)2

6、函数f (x)=|x|-|x-3|在定义域内(   )。

 (A)最大值为3,最小值为-3 (B)最大值为4,最小值为0

 (C)最大值为1,最小值为1 (D)最大值为3,最小值为-1

7、如果sinαsinβ=1,那么cos(α+β)等于(  )。

  (A)-1   (B)0   (C)1   (D)±1

8、若双曲线x2-y2=1右支上一点P(a, b)到直线y=x的距离为,

则a+b的值是(   )。

  (A)-   (B)   (C)-或   (D)2或-2

9、若全集I=R,A={x|≤0},B={x| lg(x2-2)>lgx},则

A∩=(   )。

  (A){2}   (B){-1}   (C){x| x≤-1}   (D)

10、已知函数f (x)=ax-(b+2) (a>0, a≠1)的图象不在二、四象限,

则实数a, b的取值范围是(   )。

(A)a>1, b=-1    (B)0(C)a>1, b=-2       (D)011、设函数f (x)= (x∈R, x≠-,)则f -1(2)=(   )。

  (A) -  (B)   (C)   (D)-

12、函数y=sinxcosx+cos2x-的最小正周期等于(    )。

  (A)π   (B)2π   (C)   (D)

题号  1 2 3 4 5 6 7 8 9 10 11 12
答案 D BDB A A A B BA A A
  

  高考数学选择题专项训练(六)

1、设a, b是满足ab<0的实数,那么(   )。

  (A)|a+b|>|a-b|(B)|a+b|<|a-b|

(C)|a-b|<|a|-|b|(D)|a-b|>|a|+|b|

2、设a, b, c∈R+,则三个数a+, b+, c+(   )。

  (A)都不大于2           (B)都不小于2 

  (C)至少有一个不大于2   (D)至少有一个不小于2

3、若一数列的前四项依次是2,0,2,0,则下列式子中,不能作为它的通项公式的是(   )。

  (A)an= 1-(-1)n     (B)an=1+(-1)n+1  

  (C)an=2sin2      (D)an=(1-cosnπ)+(n-1)(n-2)

4、平行六面体ABCD-A1B1C1D1的体积为30,则四面体AB1CD1的体积是(   )。

  (A)15   (B)7.5   (C)10   (D)6

5、不论k为何实数,直线(2k-1)x-(k+3)y-(k-11)=0恒通过一

个定点,这个定点的坐标是(   )。

  (A)(5, 2)   (B)(2, 3)   (C)(5, 9)   (D)(-,3)

6、方程ax+by+c=0与方程2ax+2by+c+1=0表示两条平行直线的充要条件是(   )。

  (A)ab>0, c≠1   (B)ab<0, c≠1   

(C)a2+b2≠0, c≠1   (D)a=b=c=2

7、焦距是10,虚轴长是8,过点(3, 4)的双曲线的标准方程是(   )。

  (A)(B)(C)(D)

8、函数y=sin(ωx)cos(ωx) (ω>0)的最小正周期是4π,则常数ω为(   )。

  (A)4   (B)2   (C)   (D)

9、若(1-2x)7=a0+a1x+a2x2+a3x3+……+a7x7,那么a1+a2+a3+……+a7的值等于(   )。

  (A)-2   (B)-1   (C)0   (D)2

10、当A=20°,B=25°时,(1+tanA)(1+tanB)的值是(   )。

  (A)   (B)2   (C)1+   (D)2+

11、函数y=cos(-2x)的单调递减区间是(   )。

  (A)[2kπ-, 2kπ+], k∈Z  (B)[kπ+, kπ+], k∈Z

  (C)[2kπ+, 2kπ+], k∈Z (D)[kπ-, kπ+], k∈Z

12、关于x的方程=kx+2有唯一解,则实数k的取值范围是(   )。

  (A)k=±           (B)k<-2或k>2 

  (C)-22或k=±

题号  1 2 3 4 5 6 7 8 9 10 11 12
答案 B DDC B C A D AB B D
  高考数学选择题专项训练(七)

1、已知m>n>1, 0  (A)logma>logna   (B)am>an   (C)am2、设函数y=f (x)是偶函数,则函数y=af (x)+x2 (a∈R)的图象关于(   )。

  (A)x轴对称   (B)y轴对称   

(C)原点对称   (D)直线y=x对称

3、条件甲:;条件乙:,则甲是乙的(   )。

  (A)充要条件           (B)充分而不必要条件

  (C)必要而不充分条件   (D)既不充分也不必要条件

4、已知函数y=f (x)的定义域是[a, b],且b>-a>0,则函数

F(x)=f (x)+f (-x)的定义域是(   )。

  (A)[a, b]   (B)[-b, -a]   (C)[a, -a]   (D)[-b, b]

5、设a, b∈R,则不等式a>b,同时成立的充分必要条件是(  )。

  (A)a>b>0或b0, b<0   (C)b6、若0  (A)M=a+b, m=2ab         (B)M=a2+b2, m=2 

  (C)M=a+b, m=2         (D)M=a2+b2, m=2ab

7、设lg2x-lgx-2=0的两根是α、β,则logαβ+logβα等于(   )。

  (A)1   (B)-2   (C)3   (D)-4

8、已知y=f (x)为偶函数,定义域是(-∞, +∞),它在[0, +∞)上是减函数,那么m=f (-)与n=f (a2-a+1) (a∈R)的大小关系是(  )。

  (A)m>n   (B)m≥n   (C)m9、已知定义在实数集上的函数y=f (x)满足f (x+y)=f (x)+f (y), 

且f (x)不恒等于零,则y=f (x)是(  )。

  (A)奇函数 (B)偶函数 (C)非奇非偶函数 (D)不能确定

10、已知f (x)=2|x|+3, g(x)=4x-5, f [p(x)]=g(x),则p(3)的值是(  )。

 (A)2   (B)±2   (C)-2   (D)不能确定

11、若<2,那么x的取值范围是( )。

  (A)(1, +∞)   (B)(1, 2)∪(2, +∞)   

(C)(, 2)   (D)(, 2)∪(2, +∞)

12、方程|x|2-3|x|+2=0 (x∈R)的根有(   ),

  (A)4个     (B)3个     (C)2个     (D)1个

题号  1 2 3 4 5 6 7 8 9 10 11 12
答案 B BCC B A D B AB D A
  高考数学选择题专项训练(八)

1、若{an}是等比数列,a4a7=-512, a3+a8=124, 且公比q是整数,则a10等于(   )。

  (A)256   (B)-256   (C)512   (D)-512

2、已知数列{2n-11},那么有最小值的Sn是(  )。

  (A)S1     (B)S5     (C)S6     (D)S11

3、如果xn=(1-)(1-)(1-)……(1-),则xn等于(   )。

  (A)0  (B)1  (C)  (D)不确定

4、数列的通项公式是an=(1-2x)n,若an存在,则x的取值范围是(   )。

  (A)[0,]   (B)[0, -]   (C)[0, 1]   (D)[0,- 1]

5、不等式x2-x+1>0的解集是(   )。

  (A){x| x<或x>}  (B)R  

(C)                     (D)以上都不对

6、已知方程x2+(k+2i)x+2+ki=0至少有一个实根,那么实数k的取值范围是(   )。

  (A)k≥2或k≤-2   (B)-2≤k≤2 

  (C)k=±2            (D)k=2

7、已知集合P={x| (x-1)(x-4)≥0},Q={n| (n+1)(n-5)≤0, 

n∈N}与集合S,且S∩P={1, 4},S∩Q=S,那么集合S的元素的个数是(   )。

 (A)2个(B)2个或4个(C)2个或3个或4个(D)无穷多个

8、有四位司机,四位售票员分配到四辆公共汽车上,使每辆车分别有一位司机和一名售票员,则可能的分配方案数是(   )。

  (A)    (B)    (C)   (D)

9、有4个学生和3名教师排成一行照相,规定两端不排教师,那么排法的种数是(   )。

  (A)    (B)    (C)    (D)

10、在1,2,3,4,9中任取两个数分别作对数的底和真数,可得不同的对数值的个数是(   )。

  (A)9     (B)12     (C)16     (D)20

11、下列等式中,不正确的是(   )。

  (A)(n+1)=       (B)  

 (C)=(n-2)!       (D)=

12、在(1+2x-x2)4展开式中,x7的系数是(   )。

  (A)-8   (B)12   (C)6   (D)-12

题号  1 2 3 4 5 6 7 8 9 10 11 12
答案 C BAC B C C C CA B A
  高考数学选择题专项训练(九)

1、如果(1+x)3+(1+x)4+(1+x)5+……+(1+x)50=a0+a1x+a2x2+……+a50x50,那么a3等于(   )。

  (A)2     (B)     (C)     (D)

2、299除以9的余数是(   )。

  (A)0     (B)1     (C)-1     (D)8

3、化简的结果是(  ) 。

  (A)-tanx   (B)tan   (C)tan2x   (D)cotx

4、如果函数y=f (x)的图象关于坐标原点对称,那么它必适合关系式(   )。

  (A)f (x)+f (-x)=0         (B)f (x)-f (-x)=0 

  (C)f (x)+f -1(x)=0         (D)f (x)-f -1(x)=0

5、画在同一坐标系内的曲线y=sinx与y=cosx的交点坐标是(   )。

  (A)(2nπ+, 1), n∈Z          (B)(nπ+, (-1)n), n∈Z

  (C)(nπ+,), n∈Z   (D)(nπ, 1), n∈Z

6、若sinα+cosα=,则tanα+cotα的值是(  )。

  (A)1   (B)2   (C)-1   (D)-2

7、下列函数中,最小正周期是π的函数是(   )。

  (A)f (x)=               (B)f (x)= 

  (C)f (x)=cos2-sin2          (D)f (x)=2sin2 (x-)

8、在△ABC中,sinBsinC=cos2,则此三角形是(   )。

  (A)等边三角形        (B)三边不等的三角形

  (C)等腰三角形        (D)以上答案都不对

9、下列各命题中,正确的是(   )。

  (A)若直线a, b异面,b, c异面,则a, c异面

  (B)若直线a, b异面,a, c异面,则b, c异面

  (C)若直线a//平面α,直线b平面α,则a//b

  (D)既不相交,又不平行的两条直线是异面直线

10、斜棱柱的矩形面(包括侧面与底面)最多共有(   )。

  (A)2个   (B)3个   (C)4个   (D)6个

11、夹在两平行平面之间的两条线段的长度相等的充要条件是(   )。

  (A)两条线段同时与平面垂直   (B)两条线段互相平行

  (C)两条线段相交         (D)两条线段与平面所成的角相等

12、如果正三棱锥的侧面都是直角三角形,则侧棱与底面所成的角θ应属于下列区间(  )。

  (A)(0,)   (B)(,)   (C)(,)   (D)(,)

题号  1 2 3 4 5 6 7 8 9 10 11 12
答案 C DAA C B D C DC D C
  高考数学选择题专项训练(十)

1、平面α与平面β平行,它们之间的距离为d (d>0),直线a在平面α内,则在平面β内与直线a相距2d的直线有(   )。

  (A)一条   (B)二条   (C)无数条   (D)一条也没有

2、互不重合的三个平面可能把空间分成(  )部分。

  (A)4或9  (B)6或8 (C)4或6或8 (D)4或6或7或8

3、若a, b是异面直线,aα,bβ,α∩β=c,那么c(  )。

  (A)同时与a, b相交       (B)至少与a, b中一条相交

  (C)至多与a, b中一条相交(D)与a, b中一条相交, 另一条平行

4、直线a//平面M,直线bM, 那么a//b是b//M的(   )条件。

(A)充分不必要(B)必要而不充(C)充要(D)不充分也不必要

5、和空间不共面的四个点距离相等的平面的个数是(  )。

  (A)7个   (B)6个   (C)4个   (D)3个

6、在长方体相交于一个顶点的三条棱上各取一个点,那么过这三点的截面一定是(   )。

  (A)三角形或四边形                   (B)锐角三角形

  (C)锐角三角形或钝角三角形           (D)钝角三角形

7、圆锥底面半径为r,母线长为l,且l>2r, M是底面圆周上任意一点,从M拉一条绳子绕侧面转一周再回到M,那么这条绳子的最短长度是(   )。

  (A)2πr   (B)2l   (C)2lsin   (D)lcos

8、α、β是互不重合的两个平面,在α内取5个点,在β内取

4个点,这些点最多能确定的平面个数是(   )。

  (A) 142  (B)72   (C)70   (D)66

9、各点坐标为A(1, 1)、B(-1, 1)、C(-1, -1)、D(1, -1),则

“点P在y轴”是“∠APD=∠BPC”的(   )。

  (A)充分而不必要条件   (B)必要而不充分条件

  (C)充要条件           (D)不充分也不必要条件

10、函数y=1-|x-x2|的图象大致是(   )。

    (A)            (B)            (C)             (D)

11、若直线y=x+b和函数y=有两个不同的交点,则b的取值范围是(  )。

 (A)(-,)                 (B)[-,] 

( C)(-∞,-)∪[, +∞)    (D)[1,)

12、已知函数y=ax+b和y=ax2+bx+c (a≠0),则它们的图象

可能是(   )。

    (A)        (B)           (C)         (D)

  

题号  1 2 3 4 5 6 7 8 9 10 11 12
答案 B DBA A B C B AC D B

文档

2014高考数学选择题专项训练及答案解析

高考数学选择题专项训练(一)1、同时满足①M{1,2,3,4,5};②若a∈M,则(6-a)∈M,的非空集合M有()。(A)16个(B)15个(C)7个(D)8个2、函数y=f(x)是R上的增函数,则a+b>0是f(a)+f(b)>f(-a)+f(-b)的()条件。(A)充分不必要(B)必要不充分(C)充要(D)不充分不必要3、函数g(x)=x2,若a≠0且a∈R,则下列点一定在函数y=g(x)的图象上的是()。(A)(-a,-g(-a))(B)(a,g(-a))(C)(a,-g(a))(D)
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top