最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

全等三角形单元测试卷(含答案解析)

来源:动视网 责编:小OO 时间:2025-09-23 15:35:08
文档

全等三角形单元测试卷(含答案解析)

全等三角形单元测试卷(含答案解析)一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥A
推荐度:
导读全等三角形单元测试卷(含答案解析)一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥A
全等三角形单元测试卷(含答案解析)

一、八年级数学轴对称三角形填空题(难)

1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.

【答案】5

【解析】

【分析】

作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.

【详解】

如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.

∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).

∵AB=5,∠BAC=45°,∴BH==5.

∵BM+MN的最小值是BM+MN=BM+MH=BH=5.

故答案为5.

【点睛】

本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.

2.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______

【答案】110°、125°、140°

【解析】

【分析】

先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则

∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.

【详解】

解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,

则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,

∴b﹣d=10°,

∴(60°﹣a)﹣d=10°,

∴a+d=50°,

即∠DAO=50°,

分三种情况讨论:

①AO=AD,则∠AOD=∠ADO,

∴190°﹣α=α﹣60°,

∴α=125°;

②OA=OD,则∠OAD=∠ADO,

∴α﹣60°=50°,

∴α=110°;

③OD=AD,则∠OAD=∠AOD,

∴190°﹣α=50°,

∴α=140°;

所以当α为110°、125°、140°时,三角形AOD是等腰三角形,

故答案为:110°、125°、140°.

【点睛】

本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.

∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线3.如图,点P是AOB

OB上的动点,PN PM MN

++的最小值是5 cm,则AOB

∠的度数是__________.

【答案】30°

【解析】

试题解析:分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,

分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:

∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,

∴PM=DM ,OP=OD ,∠DOA=∠POA ;

∵点P 关于OB 的对称点为C ,

∴PN=CN ,OP=OC ,∠COB=∠POB ,

∴OC=OP=OD ,∠AOB=12

∠COD , ∵PN+PM+MN 的最小值是5cm ,

∴PM+PN+MN=5,

∴DM+CN+MN=5,

即CD=5=OP ,

∴OC=OD=CD , 即△OCD 是等边三角形,

∴∠COD=60°,

∴∠AOB=30°.

4.如图,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,…,当2n ≥,70A ∠=︒时,11n n n A A B --∠=__________.

【答案】1702n -︒ 【解析】 【分析】 先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.

【详解】

解:∵在1ABA ∆中,70A ∠=︒,1AB A B =

∴170BA A A ∠==︒∠

∵1112A A A B =,1BA A ∠是121A A B ∆的外角

∴12111211703522B A A A B A BA A ︒∠=∠==

=︒∠ 同理可得,2321217017.542B A A BA A ︒∠=

==︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=

. 故答案为:

1

702n -︒ 【点睛】

本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.

5.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________

【答案】4

【解析】

如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=

12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12

=4(cm 2).

故答案是:4.

6.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,

,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.

【答案】30°

【解析】

【分析】

先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.

【详解】

解:∵AB AC =,82BAC ∠=︒,∴180492

BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,

作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,

∴∠EBC=11°+11°+38°=60°,

∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,

又∵AB=AC ,EA=EA ,

∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =

1302

BEC ∠=︒, ∴∠ADB =30°.

本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D关于直线AB的对称点E,构造等边三角形和全等三角形的模型是解题的关键.

7.等腰三角形一边长等于4,一边长等于9,它的周长是__.

【答案】22

【解析】

【分析】

等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;

【详解】

解:因为4+4=8<9,0<4<9+9=18,

∴腰的不应为4,而应为9,

∴等腰三角形的周长=4+9+9=22.

故答案为22.

【点睛】

本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.

8.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是

______________.

【答案】

2018

1

80 2

⎛⎫

⨯ ⎪

⎝⎭

【解析】

【分析】

根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性

质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第2019个三角形中以A2019为顶点的内角度数.

【详解】

解:∵在△CBA1中,∠B=20°,A1B=CB,

∴∠BA1C=

°

180-

2

B

=80°,

∵A1A2=A1D,∠BA1C是△A1A2D的外角,

∴∠DA2A1=1

2

∠BA1C=

1

2

×80°;

同理可得∠EA3A2=(1

2

)2×80°,∠FA4A3=(

1

2

)3×80°,

∴第n个三角形中以A n为顶点的底角度数是(1

2

)n-1×80°.

∴第2017个三角形中以A2019为顶点的底角度数是(1

2

)2018×80°,

故答案为:(1

2

)2018×80°.

【点睛】

本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.

9.如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB=___.

【答案】8

【解析】

试题分析:根据线段垂直平分线的性质,可知AD=BD,然后根据△BDC的周长为

BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.

故答案为8.

点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD,然后根据三角形的周长互相代换,即可其解.

10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在

AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B′F 的长为_________ 【答案】8

5

【解析】

【分析】 首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE ,得出BF 的长,即 B′F 的长.

【详解】

解:根据折叠的性质可知:DE=AE ,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,B′F=BF ,

∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,

∵∠ACB=90°,

∴∠ECF=45°, ∴△ECF 是等腰直角三角形,

∴EF=CE ,∠EFC=45°,

∴∠BFC=∠B′FC=135°,

∴∠B′FE=90°,

∵S △ABC =

12AC•BC=12

AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810AB

AC BC ∴ 4.8AC BC CE AB

⋅== ∴EF=4.8,22 3.6AE AC EC -=

∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=8

5,

【点睛】

此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE、AE是解决问题的关键.

二、八年级数学轴对称三角形选择题(难)

11.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )

A.

3

2

B.

33

2

C.

3

2

D.不能确定

【答案】B

【解析】

已知,如图,P为等边三角形内任意一点,PD、PE、PF分别是点P到边AB、BC、AC的距离,连接AP、BP、CP,过点A作AH⊥BC于点H,已知等边三角形的边长为3,可求得高

线AH=3

3

2

,因S△ABC=

1

2

BC•AH=

1

2

AB•PD+

1

2

BC•PE+

1

2

AC•PF,所以

1 2×3×AH=

1

2

×3×PD+

1

2

×3×PE+

1

2

×3×PF,即可得PD+PE+PF=AH=

3

3

2

,即点P到三角形三边

距离之和为3

3

2

.故选B.

点睛:本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.

12.如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )

A.2 B.3 C.4 D.5

【答案】C

【解析】

以O 点为圆心,OA 为半径作圆与x 轴有两交点,这两点显然符合题意.以A 点为圆心,OA 为半径作圆与x 轴交与两点(O 点除外).以OA 中点为圆心OA 长一半为半径作圆与x 轴有一交点.共4个点符合,

13.如图,在ABC ∆中,120BAC ︒∠=,点,E F 分别是ABC ∆的边AB 、AC 的中点,边BC 分别与DE 、DF 相交于点,H G ,且,DE AB DF AC ⊥⊥,连接AD 、AG 、AH ,现在下列四个结论:

①60EDF ︒∠=,②AD 平分GAH ∠,③B ADF ∠=∠,④GD GH =.

则其中正确的结论有( ).

A .1个

B .2个

C .3个

D .4个 【答案】A

【解析】

【分析】

利用,DE AB DF AC ⊥⊥及四边形的内角和即可得到①正确;;根据三角形内角和与线段的垂直平分线性质得到∠BAH+∠GAC=60︒,无条件证明∠GAD=∠HAD,故②错误;由等量代换得B ADF ∠≠∠,故③错误;利用三角形的内角和与对顶角相等得到GD GH ≠,故④错误.

【详解】

∵,DE AB DF AC ⊥⊥,

∴∠DEA=∠DFA=90︒,

∵120BAC ︒∠=,

∴∠EDF=360︒-∠DEA-∠DFA-∠BAC=60︒,故①正确;

∵120BAC ︒∠=,

∴∠B+∠C=60︒,

∵点,E F 分别是ABC ∆的边AB 、AC 的中点,,DE AB DF AC ⊥⊥,

∴BH=AH ,AG=CG ,

∴∠BAH=∠B ,∠GAC=∠C ,

∴∠BAH+∠GAC=60︒,

∵无条件证明∠GAD=∠HAD,

∴AD 不一定平分GAH ∠,故②错误;

∵∠ADF+∠DAF=90︒,∠B=∠BAH,

90BAH DAF ∠+∠≠,

∴B ADF ∠≠∠,故③错误;

∵90B BHE ∠+∠=,30B ∠≠ ,

∴ 60BHE ∠≠,

∴60DHG ∠≠,

∴DHG HDG ∠≠∠,

∴GD GH ≠,故④错误,

故选:A.

【点睛】

此题考查线段的垂直平分线的性质,利用三角形的内角和,四边形的内角和求角度,利用对顶角相等,等角对等边推导边的关系.

14.如图,在四边形ABCD 中,AB AC =,60ABD ∠=,75ADB ∠=,

30BDC ∠=,则DBC ∠=( )°

A .15

B .18

C .20

D .25

【答案】A

【解析】

【分析】 延长BD 到M 使得DM =DC ,由△ADM ≌△ADC ,得AM =AC =AB ,得△AMB 是等边三角形,得∠ACD =∠M =60°,再求出∠BAO 即可解决问题.

【详解】

如图,延长BD 到M 使得DM =DC.

∵∠ADB =75°,

∴∠ADM =180°﹣∠ADB =105°.

∵∠ADB =75°,∠BDC =30°,

∴∠ADC =∠ADB +∠BDC =105°,

∴∠ADM =∠ADC.

在△ADM 和△ADC 中,

∵AD AD ADM ADC DM DC =⎧⎪∠=∠⎨⎪=⎩

∴△ADM ≌△ADC ,

∴AM =AC.

∵AC =AB ,

∴AM =AC =AB ,∠ABC =∠ACB.

∵∠ABD =60°,

∴△AMB 是等边三角形,

∴∠M =∠DCA =60°.

∵∠DOC =∠AOB ,∠DCO =∠ABO =60°,

∴∠BAO =∠ODC =30°.

∵∠CAB +∠ABC +∠ACB =180°,

∴30°+2(60°+∠CBD )=180°,

∴∠CBD =15°.

故选:A.

【点睛】

本题考查了等边三角形的判定和性质、全等三角形的判定和性质等知识,解决问题的关键是添加辅助线构造全等三角形,题目有一定难度.

15.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是( )

A .AD =BE

B .BE ⊥A

C C .△CFG 为等边三角形

D .FG ∥BC 【答案】B

【解析】

试题解析:A.ABC 和CDE △均为等边三角形,

60AC BC EC DC ACB ECD ∴==∠=∠=︒,,

在ACD 与BCE 中,

{AC BC

ACD BCE CD CF =∠=∠=,

ACD BCE ∴≌,

AD BE

∴=,正确.

B.据已知不能推出F是AC中点,即AC和BF不垂直,所以AC BE

⊥错误,故本选项符合题意.

C.CFG是等边三角形,理由如下:

180606060

ACG BCA

∠=︒-︒-︒=︒=∠,

ACD BCE

≌,

CBE CAD

∴∠=∠,

在ACG和BCF中,{

CAG CBF AC BC

BCF ACG

∠=∠

=

∠=∠,

ACG BCF

∴≌,

CG CH

∴=,又∵∠ACG=60°

CFG

∴是等边三角形,正确.

D.CFG是等边三角形,

60

CFG ACB

∴∠︒=∠

﹦,

.

FG BC

∴正确.

故选B.

16.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,在直线AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()

A.6个B.5个C.4个D.3个

【答案】C

【解析】

【分析】

根据等腰三角形的判定定理即可得到结论.

【详解】

解:根据题意,

∵△PAB为等腰三角形,

∴可分为:PA=PB,PA=AB,PB=AB三种情况,如图所示:

∴符合条件的点P共有4个;

【点睛】

本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.

17.如图,在等腰△ABC 中,AB=AC=6,∠BAC=120°,点P 、Q 分别是线段BC 、射线BA 上一点,则CQ+PQ 的最小值为( )

A .6

B .7.5

C .9

D .12

【答案】C

【解析】

【分析】 通过作点C 关于直线AB 的对称点,利用点到直线的距离垂线段最短,即可求解.

【详解】

解:如图,作点C 关于直线AB 的对称点1C ,1CC 交射线BA 于

H ,过点1C 作BC 的垂线,垂足为P ,与AB 交于点Q ,CQ+PQ 的长即为1PC 的长.

∵AB=AC=6,∠BAC=120°,

∴∠ABC=30°,

易得BC=3

在Rt △BHC 中,∠ABC=30°,

∴HC=33BCH=60°, ∴163CC =

在1Rt △PCC 中,1PCC ∠=60°,

∴19PC =

∴CQ+PQ 的最小值为9,

本题考查了等腰三角形的性质以及利用对称点求最小值的问题,认真审题作出辅助线是解题的关键.

18.如图,四边形ABCD中,∠C=,∠B=∠D=,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为().

A.B.C.D.

【答案】D

【解析】

【分析】

【详解】

作点A关于直线BC和直线CD的对称点G和H,连接GH,交BC、CD于点E、F,连接AE、AF,则此时△AEF的周长最小,由四边形的内角和为360°可知,∠BAD=360°-90°-90°-50°=130°,即∠1+∠2+∠3=130°①,由作图可知,∠1=∠G,∠3=∠H,△AGH的内角和为180°,则2(∠1+∠3)+ ∠2=180°②,又①②联立方程组,解得∠2=80°.

故选D.

考点:轴对称的应用;路径最短问题.

19.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°

【答案】A

【解析】

【分析】

作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.

【详解】

作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,

∵PP1关于OA对称,∠MPN=110°

∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,

同理可得:∠P2OP=2∠NOP,OP=OP2,

∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,

∴△P1OP2是等腰三角形.

∴∠OP2N=∠OP1M,

∴∠P1OP2=180°-110°=70°,

∴∠AOB=35°,

故选A.

【点睛】

考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.

20.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()

A.B.1+

2

C.D-1【答案】B

【解析】

第一次折叠后,等腰三角形的底边长为1;

,腰长为1

2

,所以周长为

11

1 222

2 ++=+.故答案为B.

文档

全等三角形单元测试卷(含答案解析)

全等三角形单元测试卷(含答案解析)一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥A
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top