[教学目标]
1.借助数轴,使学生了解相反数的概念
2.会求一个有理数的相反数
3.激发学生学习数学的兴趣.
[教学重点与难点]
重点: 理解相反数的意义
难点: 理解相反数的意义
[教学设计]
提问
1、数轴的三要素是什么?
2、填空:
数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。
新课
相反数的概念:
只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。
概念的理解:
(1)互为相反数的两个数分别在原点的两旁,且到原点的距离相等。
(2)一般地,数a的相反数是,不一定是负数。
(3)在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数
-(-3)是(-3)的相反数,所以-(-3)=3,于是
(4)互为相反数的两个数之和是0
即如果x与y互为相反数,那么x+y=0;反之,若x+y=0, 则x与y互为相反数
(5)相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反数”这句话是不对的。
例1 求下列各数的相反数:
(1)-(2) (3)0
(4) (5)-
(7) a+2
你来判断:
(1)-2是相反数
(2)-3和+3都是相反数
(3)-3是3的相反数
(4)-3与+3互为相反数
(5)+3是-3的相反数
(6)一个数的相反数不可能是它本身
例2 化简下列各数中的符号:
(1) (2)-(+5)
(3) (4)
你来填一填:
(1)a-4的相反数是 ,3-x的相反数是 。
(2)是 的相反数。
(3)如果-a=-9,那么-a的相反数是 。
例3 填空:
(1)若-(a-5)是负数,则a-5 0.
(2) 若是负数,则x+y 0.
动手做一做:
已知a、b在数轴上的位置如图所示。
(1)在数轴上作出它们的相反数;
(2)用“<”按从小到大的顺序将这四个数连接起来。
你来试一试:
如果a-5与a互为相反数,求a.
练习:教材14页
小节:1、相反数的定义
2、互为相反数的数在数轴上表示的点的特征
3、怎样求一个数的相反数?怎样表示一个数的相反数?作业:18页第3题
作业:1、必做题 教科书第18页习题1.2第3题
2、选做题 教师自行安排
课题: 1.2.3 相反数
教学目标 | 1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系; 2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力; 3,体验数形结合的思想。 | ||
教学难点 | 归纳相反数在数轴上表示的点的特征 | ||
知识重点 | 相反数的概念 | ||
教学过程(师生活动) | 设计理念 | ||
设置情境 引入课题 | 问题1:请将下列4个数分成两类,并说出为什么要这样分类 4,-2,-5,+2 允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。 (引导学生观察与原点的距离) 思考结论:教科书第13页的思考 再换2个类似的数试一试。 归纳结论:教科书第13页的归纳。 | 以开放的形式创设情境,以学生进行讨论,并培养分类的能力 培养学生的观察与归纳能力,渗透数形思想 | |
深化主题提炼定义 | 给出相反数的定义 问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么? 学生思考讨论交流,教师归纳总结。 规律:一般地,数a的相反数可以表示为-a 思考:数轴上表示相反数的两个点和原点有什么关系? 练一练:教科书第14页第一个练习 | 体验对称的图形的特点,为相反数在数轴上的特征做准备。 深化相反数的概念;“零的相反数是零”是相反数定义的一部分。 强化互为相反数的数在数轴上表示的点的几何意义 | |
给出规律 解决问题 | 问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗? 学生交流。 分别表示+5和-5的相反数是-5和+5 练一练:教科书第14页第二个练习 | 利用相反数的概念得出求一个数的相反数的方法 | |
小结与作业 | |||
课堂小结 | 1,相反数的定义 2,互为相反数的数在数轴上表示的点的特征 3,怎样求一个数的相反数?怎样表示一个数的相反数? | ||
本课作业 | 1,必做题 教科书第18页习题1.2第3题 2,选做题 教师自行安排 | ||
本课教育评注(课堂设计理念,实际教学效果及改进设想) | |||
1、相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想. 2、教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法. 3、本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地. |