理科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4. 考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知在复平面内对应的点在第四象限,则实数m的取值范围是
(A) (B) (C) (D)
(2)已知集合,,则
(A) (B)
(C) (D)
(3)已知向量,且,则m=
(A) (B) (C)6 (D)8
(4)圆的圆心到直线 的距离为1,则a=
(A) (B) (C) (D)2
(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为
(A)24 (B)18 (C)12 (D)9
(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为
(A)20π (B)24π (C)28π (D)32π
(7)若将函数y=2sin 2x的图像向左平移个单位长度,则平移后图象的对称轴为
(A) (B)
(C) (D)
(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的a为2,2,5,则输出的
(A)7 (B)12 (C)17 (D)34
(9)若,则=
(A) (B) (C) (D)
(10)从区间随机抽取2n个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率 的近似值为
(A) (B) (C) (D)
(11)已知,是双曲线E:的左,右焦点,点M在E上,与轴垂直,sin ,则E的离心率为
(A) (B) (C) (D)2
(12)已知函数满足,若函数与图像的交点
为,,⋯,,则
(A)0 (B)m (C)2m (D)4m
第Ⅱ卷
本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.
(13)的内角A,B,C的对边分别为a,b,c,若,,,
则 .
(14),是两个平面,m,n是两条线,有下列四个命题:
①如果,,,那么.
②如果,,那么.
③如果,,那么.
④如果,,那么m与所成的角和n与所成的角相等.
(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是
(16)若直线是曲线的切线,也是曲线的切线, .
三、解答题:解答应写出文字说明、证明过程或演算步骤.
(17)(本小题满分12分)
为等差数列的前n项和,且,.记,其中表示不超过x的最大整数,如,.
(Ⅰ)求,,;
(Ⅱ)求数列的前项和.
(18)(本小题满分12分)
某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保 费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
一年内出险次数 | 0 | 1 | 2 | 3 | 4 | |
概 率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
(19)(本小题满分12分)
如图,菱形ABCD的对角线AC与BD交于点O,,,点E,F分别在AD,CD上,,EF交BD于点H.将△DEF沿EF折到△的位置.
()证明:平面ABCD;
()求二面角的正弦值.
(20)(本小题满分12分)
已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为的直线交E于A,M两点,点N在E上,MA⊥NA.
()当,时,求△AMN的面积;
()当时,求k的取值范围.
(21)(本小题满分12分)
(I)讨论函数的单调性,并证明当时,
(II)证明:当 时,函数 有最小值.设的最小值为,求函数的值域.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.
(I) 证明:B,C,G,F四点共圆;
(II)若,E为DA的中点,求四边形BCGF的面积.
(23)(本小题满分10分)选修4—4:坐标系与参数方程
在直线坐标系xOy中,圆C的方程为.
(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(II)直线l的参数方程是(t为参数),l与C交于A、B两点,,求l的斜率.
(24)(本小题满分10分),选修4—5:不等式选讲
已知函数,M为不等式的解集.
(I)求M;
(II)证明:当a,时,.
参:
1、解析:∴m+3>0,m–1<0,∴–3 4、解析:圆x2+y2–2x–8y+13=0化为标准方程为:(x–1)2+(y–4)2=4,故圆心为(1,4),d==1,解得a=–,故选A. 5、解析一:E→F有6种走法,F→G有3种走法,由乘法原理知,共6×3=18种走法,故选B. 解析二:由题意,小明从街道的E处出发到F处最短有C条路,再从F处到G处最短共有C条路,则小明到老年公寓可以选择的最短路径条数为C·C=1,故选B。 6、解析:几何体是圆锥与圆柱的组合体, 设圆柱底面圆半径为r,周长为c,圆锥母线长为l,圆柱高为h. 由图得r=2,c=2πr=4π,由勾股定理得:l==4,S表=πr2+ch+cl=4π+16π+8π=28π,故选C. 7、解析:由题意,将函数y=2sin2x的图像向左平移个单位得y=2sin2(x+)=2sin(2x+),则平移后函数的对称轴为2x+=+kπ,k∈Z,即x=+,k∈Z,故选B。 8、解析:第一次运算:s=0×2+2=2,第二次运算:s=2×2+2=6,第三次运算:s=6×2+5=17,故选C. 9、解析:∵cos(–α)=,sin2α=cos(–2α)=2cos2(–α)–1=,故选D. 解法二:对cos(–α)=展开后直接平方 解法三:换元法 10、解析:由题意得:(xi,yi)(i=1,2,3,...,n)在如图所示方格中,而平方和小于1的点均在如图的阴影中 由几何概型概率计算公式知=,∴π=,故选C. 11、解析: 离心率e=,由正弦定理得e====.故选A. 12、解析:由f(–x)=2–f(x)得f(x)关于(0,1)对称,而y==1+也关于(0,1)对称, ∴对于每一组对称点xi+x'i=0,yi+y'i=2, ∴,故选B. 13、解析:∵cosA=,cosC=,sinA=,sinC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=, 由正弦定理:=,解得b=. 14、解析:对于①,m⊥n,m⊥α,n∥β,则α,β的位置关系无法确定,故错误;对于②,因为,所以过直线n作平面γ与平面β相交于直线c,则n∥c,因为m⊥α,∴m⊥c,∴m⊥n,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④. 15、解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足;若丙(1,3),则乙(2,3),甲(1,2)不满足;故甲(1,3), 16、解析:y=lnx+2的切线为:y=·x+lnx1+1(设切点横坐标为x1) y=ln(x+1)的切线为:y=·x+ln(x2+1)–,∴ 解得x1=,x2=–。∴b=lnx1+1=1–ln2. 17、解析:(1)设{an}的公差为d,S7=7a4=28,∴a4=4,∴d==1,∴an=a1+(n–1)d=n. ∴b1=[lga1]=[lg1]=0,b11=[lga11]=[lg11]=1,b101=[lga101]=[lg101]=2. (2)记{bn}的前n项和为Tn,则T1000=b1+b2+...+b1000=[lga1]+[lga2]+...+[lga1000]. 当0≤lgan<1时,n=1,2,...,9;当1≤lgan<2时,n=10,11,...,99;当2≤lgan<3时,n=100,101,...,999; 当lgan=3时,n=1000.∴T1000=0×9+1×90+2×900+3×1=13. 18、(1)设续保人本年度的保费高于基本保费为事件A,P(A)=1–P()=1–(0.30+0.15)=0.55. (2)设续保人保费比基本保费高出60%为事件B,P(B|A)===. ⑶解:设本年度所交保费为随机变量X. ∴平均保费与基本保费比值为1.23. 19、解析:(1)证明:如下左1图,∵AE=CF=,∴=,∴EF∥AC. ∵四边形ABCD为菱形,∴AC⊥BD,∴EF⊥BD,∴EF⊥DH,∴EF⊥D'H. ∵AC=6,∴AD=3;又AB=5,AO⊥OB,∴OB=4,∴OH=·OD=1,∴DH=D'H=3,∴|OD'|2=|OH|2+|D'H|2,∴D'H⊥OH. 又∵OH∩EF=H,∴D'H⊥面ABCD. (2)方法一、几何法:若AB=5,AC=6,则AO=3,B0=OD=4,∵AE=,AD=AB=5,∴DE=5–=, ∵EF∥AC,∴====,∴EH=,EF=2EH=,DH=3,OH=4–3=1, ∵HD’=DH=3,OD’=2,∴满足HD’2=OD’2+OH2,则△OHD’为直角三角形,且OD’⊥OH, 即OD’⊥底面ABCD,即OD’是五棱锥D’–ABCFE的高. 底面五边形的面积S=×AC·OB+=×6×4+=12+=, 则五棱锥D’–ABCFE体积V=S·OD’=××2=. 方法二、向量法。建立如下左2图坐标系H–xyz.B(5,0,0),C(1,3,0),D'(0,0,3),A(1,–3,0), ∴向量AB=(4,3,0),AD'=(–1,3,3),AC=(0,6,0), 设面ABD'法向量n1=(x,y,z),由得,取,∴n1=(3,–4,5). 同理可得面AD'C的法向量n2=(3,0,1), ∴|cosθ|===,∴sinθ=。 20、解析:(1)当t=4时,椭圆E的方程为+=1,A点坐标为(–2,0),则直线AM的方程为y=k(x+2). 联立椭圆E和直线AM方程并整理得,(3+4k2)x2+16k2x+16k2–12=0。 解得x=–2或x=–,则|AM|=|–+2|=·。 ∵AM⊥AN,∴|AN|=·=·。 ∵|AM|=|AN|,k>0,∴·=·,整理得(k–1)(4k2–k–4)=0, 4k2–k+4=0无实根,∴k=1. 所以△AMN的面积为|AM|2=(·)2=. (2)直线AM的方程为y=k(x+), 联立椭圆E和直线AM方程并整理得,(3+tk2)x2+2tk2x+t2k2–3t=0。解得x=–或x=–, ∴|AM|=|–+|=·,∴|AN|=· ∵2|AM|=|AN|,∴2··=·,整理得,t=. ∵椭圆E的焦点在x轴,∴t>3,即>3,整理得<0,解得 ∵当x∈(–∞,–2)∪(–2,+∞)时,f'(x)>0,∴f(x)在(–∞,–2)和(–2,+∞)上单调递增。 ∴x>0时,ex>f(0)=–1,∴(x–2)ex+x+2>0。 (2)g'(x)===,a∈[0,1)。 由(1)知,当x>0时,f(x)=ex的值域为(–1,+∞),只有一解.使得·et=–a,t∈(0,2]。 当x∈(0,t)时g'(x)<0,g(x)单调减;当x∈(t,+∞)时g'(x)>0,g(x)单调增 h(a)===。 记k(t)=,在t∈(0,2]时,k'(t)=>0,∴k(t)单调递增,∴h(a)=k(t)∈(,]. 22、解析:(1)证明:∵DF⊥CE,∴Rt△DEF∽Rt△CED,∴∠GDF=∠DEF=∠BCF,=。 ∵DE=DG,CD=BC,∴=。∴△GDF∽△BCF,∴∠CFB=∠DFG。 ∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,∴∠GFB+∠GCB=180°.∴B,C,G,F四点共圆. (2)∵E为AD中点,AB=1, ∴DG=CG=DE=,∴在Rt△GFC中,GF=GC,连接GB,Rt△BCG≌Rt△BFG,∴S四边形BCGF=2S△BCG=2××1×=. 23、解:(1)整理圆的方程得x2+y2+12x+11=0, 由ρ2=x2+y2、ρcosθ=x、ρsinθ=y可知圆C的极坐标方程为ρ2+12ρcosθ+11=0. (2)记直线的斜率为k,则直线的方程为kx–y=0, 由垂径定理及点到直线距离公式知:=,即=,整理得k2=,则k=±. 24、解析:(1)当x<–时,f(x)=–x–x–=–2x,若–1 证毕.
平均保费EX=0.85a×0.30+0.15a+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a,X 0.85a a 1.25a 1.5a 1.75a 2a P 0.30 0.15 0.20 0.20 0.10 0.05