数字图像处理上机实习
(第二专题)
学生姓名:
班 级:
学 号:
指导老师:
实验题目
一、图象灰度变换
0, 显示灰度图象p02-01~p02-06及直方图;
1,对灰度图象p02-04的灰度范围进行适当展宽;
二、图象平滑
4,对p02-04jy、p02-04gs进行5*5方形窗口的最大均匀性平滑滤波,并比较其效果;
三、图象锐化
4,利用3*3的Krisch算子对p02-04实施图象锐化,二维梯度模板为:
H1=, H2=
H3=, H4=
实验内容
一 图象灰度变换
要求(1-0) 显示灰度图象p02-01~p02-06及直方图;
1.程序代码
subplot(621)
imshow(I)
title('图像')
subplot(622),imhist(I,256)
title('图像直方图')
I=imread('D:\\matlab2011\\work\\p02-02.tif');
subplot(623)
imshow(I)
subplot(624),imhist(I,256)
I=imread('D:\\matlab2011\\work\\p02-03.tif');
subplot(625)
imshow(I)
subplot(626),imhist(I,256)
I=imread('D:\\matlab2011\\work\\p02-04.tif');
subplot(6,2,7)
imshow(I)
subplot(6,2,8),imhist(I,256)
subplot(6,2,9)
imshow(I)
subplot(6,2,10),imhist(I,256)
I=imread('D:\\matlab2011\\work\\p02-06.tif');
subplot(6,2,11)
imshow(I)
subplot(6,2,12),imhist(I,256)
所用函数:
I=imread(‘path’):函数imread用于读取图片文件中的数据,path为图像文件存放路径。
figure('Name', '图像'):打开一个命名为“图像显示类”图表显示图片。
subplot(m,n,p):subplot是将多个图画到一个平面上的工具。其中,m表示是图排成m行,n表示图排成n列,也就是整个figure中有n个图是排成一行的,一共m行,如果m=2就是表示2行图。p表示图所在的位置,p=1表示从左到右从上到下的第一个位置。本程序中为6行2列。
imshow(I):imshow是matlab中显示图像的函数,I为图像中的信息。其调用方式有很多,比如imshow(BW);imshow(I,[low high])等。
imhist(I,256):n为灰度图像灰度级,I为灰度图像,缺省值为256。
2.运行结果
要求(1-4) 对灰度图象p02-04的灰度范围进行适当展宽
1.程序代码
J=imread('D:\\matlab2011\\work\\p02-04.tif');
subplot(131)
imshow(J,[100,150]);
title('灰度范围100-150')
J=imread('D:\\matlab2011\\work\\p02-04.tif');
subplot(132)
imshow(J,[50,200]);
title('灰度范围50-200')
J=imread('D:\\matlab2011\\work\\p02-04.tif');
subplot(133)
imshow(J,[0,255]);
title('灰度范围0-255')
相关函数:
imshow(J,[50,200]):J代表所显示图像的灰度矩阵 ,[50,200]为图像数据的值域。
2.运行结果
二 图象平滑
要求(2-2) 对p02-02jy、p02-02gs进行3*3方形窗口的灰度最相近的K个邻点平均法滤波
1.程序代码
A=imread('D:\\matlab2011\\work\\p02-04.tif');
figure('Name', '图像显示');
subplot(3,2,1);
imshow(A); %显示灰度图像
title('原图象P01-01');
J1=imnoise(A,'salt & pepper',0.02); %加均值为0,方差为0.02的椒盐噪声
subplot(3,2,3);
imshow(J1); %显示灰度图像
title('椒盐噪声图象');
K1=filter2(fspecial('average',3),J1)/255;
subplot(3,2,4);
imshow(K1); %显示灰度图像
title('椒盐噪声平滑图象');
J2=imnoise(A,'gaussian',0.02); %加均值为0,方差为0.02的高斯噪声。
subplot(3,2,5);
imshow(J1); %显示灰度图像
title('高斯噪声图象');
K2=filter2(fspecial('average',3),J1)/255;
subplot(3,2,6);
imshow(K2); %显示灰度图像
title('高斯噪声平滑图象');
2.运行结果
对p02-02jy、p02-02gs进行3*3方形窗口的灰度最相近的K个邻点平均法滤波,滤波后椒盐噪声和高斯噪声均减少,但图像变得模糊。
要求(2-4) 对p02-04jy、p02-04gs进行方形窗口的最大均匀性平滑滤波
1.算法设计
为避免消除噪声时引起边缘模糊,最大均匀性平滑算法先找出环绕每像素的灰度最均匀 窗口,然后用该窗口的灰度均值代替该像素原来的灰度值。
具体来说,对图像中任一像素(x,y)的5个有重叠的3*3邻域,用梯度衡量它们的灰度变换大小。把其中灰度变换最小的邻域作为最均匀的窗口,用其平均灰度代替像素(x,y)的灰度值。
2.程序代码
A=imread('D:\\matlab2011\\work\\p02-04.tif');
J1=imnoise(A,'salt & pepper',0.01);%加椒盐噪声
G1=imnoise(A,'gaussian',0.01);%加高斯噪声
subplot(2,2,1);
imshow(J1);
title('p02-04jy');
subplot(2,2,3);
imshow(G1);
title('p02-04gs');
%%%%%%%%%%%3*3最大均匀性平滑滤波%%%%%%%%%%%%
[W,L]=size(J1);
J2=double(J1);
G2=double(G1);
G3=double(G1);
J3=double(J1);
Com=zeros(1,5);
COM=double(Com);
COM1=double(Com);
%%%%%%%%%%%%%%%%计算梯度%%%%%%%%%%%%%%%
for i=3:L-2
for j=3:W-2
COM(1)=abs(J2(i-2,j-2)-J2(i,j))+abs(J2(i-2,j-1)-J2(i,j))+abs(J2(i-2,j)-J2(i,j))+abs(J2(i-1,j-2)-J2(i,j))+abs(J2(i-1,j-1)-J2(i,j))+abs(J2(i-1,j)-J2(i,j))+abs(J2(i,j-2)-J2(i,j))+abs(J2(i,j-1)-J2(i,j));
COM(2)=abs(J2(i+2,j-2)-J2(i,j))+abs(J2(i+2,j-1)-J2(i,j))+abs(J2(i+2,j)-J2(i,j))+abs(J2(i+1,j-2)-J2(i,j))+abs(J2(i+1,j-1)-J2(i,j))+abs(J2(i+1,j)-J2(i,j))+abs(J2(i,j-2)-J2(i,j))+abs(J2(i,j-1)-J2(i,j));
COM(3)=abs(J2(i-2,j+2)-J2(i,j))+abs(J2(i-2,j+1)-J2(i,j))+abs(J2(i-2,j)-J2(i,j))+abs(J2(i-1,j+2)-J2(i,j))+abs(J2(i-1,j+1)-J2(i,j))+abs(J2(i-1,j)-J2(i,j))+abs(J2(i,j+2)-J2(i,j))+abs(J2(i,j+1)-J2(i,j));
COM(4)=abs(J2(i+2,j+2)-J2(i,j))+abs(J2(i+2,j+1)-J2(i,j))+abs(J2(i+2,j)-J2(i,j))+abs(J2(i+1,j+2)-J2(i,j))+abs(J2(i+1,j+1)-J2(i,j))+abs(J2(i+1,j)-J2(i,j))+abs(J2(i,j+2)-J2(i,j))+abs(J2(i,j+1)-J2(i,j));
COM(5)=abs(J2(i-1,j-1)-J2(i,j))+abs(J2(i-1,j)-J2(i,j))+abs(J2(i-1,j+1)-J2(i,j))+abs(J2(i,j+1)-J2(i,j))+abs(J2(i,j-1)-J2(i,j))+abs(J2(i+1,j-1)-J2(i,j))+abs(J2(i+1,j)-J2(i,j))+abs(J2(i+1,j+1)-J2(i,j));
COM1(1)=abs(G2(i-2,j-2)-G2(i,j))+abs(G2(i-2,j-1)-G2(i,j))+abs(G2(i-2,j)-G2(i,j))+abs(G2(i-1,j-2)-G2(i,j))+abs(G2(i-1,j-1)-G2(i,j))+abs(G2(i-1,j)-G2(i,j))+abs(G2(i,j-2)-G2(i,j))+abs(G2(i,j-1)-G2(i,j));
COM1(2)=abs(G2(i+2,j-2)-G2(i,j))+abs(G2(i+2,j-1)-G2(i,j))+abs(G2(i+2,j)-G2(i,j))+abs(G2(i+1,j-2)-G2(i,j))+abs(G2(i+1,j-1)-G2(i,j))+abs(G2(i+1,j)-G2(i,j))+abs(G2(i,j-2)-G2(i,j))+abs(G2(i,j-1)-G2(i,j));
COM1(3)=abs(G2(i-2,j+2)-G2(i,j))+abs(G2(i-2,j+1)-G2(i,j))+abs(G2(i-2,j)-G2(i,j))+abs(G2(i-1,j+2)-G2(i,j))+abs(G2(i-1,j+1)-G2(i,j))+abs(G2(i-1,j)-G2(i,j))+abs(G2(i,j+2)-G2(i,j))+abs(G2(i,j+1)-G2(i,j));
COM1(4)=abs(G2(i+2,j+2)-G2(i,j))+abs(G2(i+2,j+1)-G2(i,j))+abs(G2(i+2,j)-G2(i,j))+abs(G2(i+1,j+2)-G2(i,j))+abs(G2(i+1,j+1)-G2(i,j))+abs(G2(i+1,j)-G2(i,j))+abs(G2(i,j+2)-G2(i,j))+abs(G2(i,j+1)-G2(i,j));
COM1(5)=abs(G2(i-1,j-1)-G2(i,j))+abs(G2(i-1,j)-G2(i,j))+abs(G2(i-1,j+1)-G2(i,j))+abs(G2(i,j+1)-G2(i,j))+abs(G2(i,j-1)-G2(i,j))+abs(G2(i+1,j-1)-G2(i,j))+abs(G2(i+1,j)-G2(i,j))+abs(G2(i+1,j+1)-G2(i,j));
%%%%%%%%%%%%%%找出梯度值最小的3*3邻域(灰度变换最小的邻域)%%%%%%%%%%
temp=min(COM);
for k=1:5
if temp==(COM(k)) t=k;
end
end
%%%%%%%%%%%%%%%%%计算该邻域平均灰度%%%%%%%%%%%%%%%
if(k==1)
J3(i,j)=J2(i-2,j-2)/9+J2(i-2,j-1)/9+J2(i-2,j)/9+J2(i-1,j-2)/9+J2(i-1,j-1)/9+J2(i-1,j)/9+J2(i,j-2)/9+J2(i,j-1)/9+J2(i,j-2)/9;
end
if(k==2)
J3(i,j)=J2(i+2,j-2)/9+J2(i+2,j-1)/9+J2(i+2,j)/9+J2(i+1,j-2)/9+J2(i+1,j-1)/9+J2(i+1,j)/9+J2(i,j-2)/9+J2(i,j-1)/9+J2(i,j-2)/9;
end
if(k==3)
J3(i,j)=J2(i-2,j+2)/9+J2(i-2,j+1)/9+J2(i-2,j)/9+J2(i-1,j+2)/9+J2(i-1,j+1)/9+J2(i-1,j)/9+J2(i,j+2)/9+J2(i,j+1)/9+J2(i,j+2)/9;
end
if(k==4)
J3(i,j)=J2(i+2,j+2)/9+J2(i+2,j+1)/9+J2(i+2,j)/9+J2(i+1,j+2)/9+J2(i+1,j+1)/9+J2(i+1,j)/9+J2(i,j+2)/9+J2(i,j+1)/9+J2(i,j+2)/9;
end
if(k==5)
J3(i,j)=J2(i-1,j-1)/9+J2(i,j-1)/9+J2(i+1,j-1)/9+J2(i-1,j)/9+J2(i,j)/9+J2(i+1,j)/9+J2(i-1,j+1)/9+J2(i,j+1)/9+J2(i+1,j+1)/9;
end
temp=min(COM1);
for k=1:5
if temp==(COM1(k)) t=k;
end
end
if(k==1)
G3(i,j)=G2(i-2,j-2)/9+G2(i-2,j-1)/9+G2(i-2,j)/9+G2(i-1,j-2)/9+G2(i-1,j-1)/9+G2(i-1,j)/9+G2(i,j-2)/9+G2(i,j-1)/9+G2(i,j-2)/9;
end
if(k==2)
G3(i,j)=G2(i+2,j-2)/9+G2(i+2,j-1)/9+G2(i+2,j)/9+G2(i+1,j-2)/9+G2(i+1,j-1)/9+G2(i+1,j)/9+G2(i,j-2)/9+G2(i,j-1)/9+G2(i,j-2)/9;
end
if(k==3)
G3(i,j)=G2(i-2,j+2)/9+G2(i-2,j+1)/9+G2(i-2,j)/9+G2(i-1,j+2)/9+G2(i-1,j+1)/9+G2(i-1,j)/9+G2(i,j+2)/9+G2(i,j+1)/9+G2(i,j+2)/9;
end
if(k==4)
G3(i,j)=G2(i+2,j+2)/9+G2(i+2,j+1)/9+G2(i+2,j)/9+G2(i+1,j+2)/9+G2(i+1,j+1)/9+G2(i+1,j)/9+G2(i,j+2)/9+G2(i,j+1)/9+G2(i,j+2)/9;
end
if(k==5)
G3(i,j)=G2(i-1,j-1)/9+G2(i,j-1)/9+G2(i+1,j-1)/9+G2(i-1,j)/9+G2(i,j)/9+G2(i+1,j)/9+G2(i-1,j+1)/9+G2(i,j+1)/9+G2(i+1,j+1)/9;
end
end
end;
subplot(2,2,2);
imshow(uint8(J3));
title('jy经3*3最大均匀滤波');
subplot(2,2,4);
imshow(uint8(G3));
title('gs经3*3最大均匀滤波');
3.运行结果
三 图象锐化
要求(3-4) 利用3*3的Krisch算子对p02-04实施图象锐化
1.算法设计
1971年,R.Kirsch提出了一种能检测边缘方向的Kirsch算子新方法:它使用了8个模板来确定梯度幅度值和梯度的方向。
算法流程图
读入图像,对边界点赋值,再利用krisch算子算出每个像素点梯度值,找出最大的梯度值并保存。算出梯度后,根据需要生成三种不同的增强图像。
2.程序代码
A=imread('D:\\matlab2011\\work\\p02-04.tif');
figure('Name', '图像显示');
subplot(2,2,1);
imshow(A); %显示灰度图像
f = im2double(A); %类型转换
title('原图象P02-04');
B=imkrisch( f , 0.7,0)
subplot(2,2,2);
imshow(B); %显示灰度图像
title('锐化图象1 P02-04');
B=imkrisch( f ,0.7, 1)
subplot(2,2,3);
imshow(B); %显示灰度图像
title('锐化图象2 P02-04');
B=imkrisch( f , 0.7,2)
subplot(2,2,4);
imshow(B); %显示灰度图像
title('锐化图象3 P02-04');
相关函数:
function [g] = imkrisch( f , T, way)
%用imkrisch算子进行图像锐化
%f 为输入图像
%T 为比较的阈值
%way 为算子的输出方式
%way 0、1、2
in = nargin;
if in < 3
error('Not enough input argument');
end
fs = size(f);
m = fs(1,1);
n = fs(1,2);
if (m <= 1) || (n <= 1)
g = f;
return;
end
%直接对整个图像赋值,简化算法
g = f;
for i = 2:m-1
for j = 2:n-1
m_krisch = [f(i-1,j-1),f(i-1,j),f(i-1,j+1),f(i,j-1), ...
f(i,j+1),f(i+1,j-1),f(i+1,j),f(i+1,j+1)];
w_krisch = [ 5, 5, 5,-3,-3,-3,-3,-3; ...
-3,-3, 5,-3, 5,-3,-3, 5; ...
-3,-3,-3,-3,-3, 5, 5, 5; ...
5,-3,-3, 5,-3, 5,-3,-3];
con =abs( m_krisch*( w_krisch') );
g(i,j) = max(con);
end
end
%判定输出的形式
%使用4.3.9公式 大于T:g 小于T:0黑
if way == 2
for i = 1:m-1
for j = 1:n-1
if g(i,j) > T
g(i,j) = g(i,j);
else
g(i,j) = 0;
% g(i,j) = g(i,j);
end
end
end
end
%else %使用4.3.8公式 大于T:g 小于T :f
if way == 1
for i = 1:m-1
for j = 1:n-1
if g(i,j) < T
g(i,j) = f(i,j);
end
end
end
end
if way == 0
for i = 1:m-1
for j = 1:n-1
if g(i,j) > T
g(i,j) = g(i,j);
else
g(i,j) = g(i,j);
end
end
end
end
end
3.运行结果及分析
(1)采用Krisch算子,采用三种不同的增强图像方法
锐化图像1:
使原图像各点(x,y)的灰度g(x,y)等于梯度,即:g(x,y) = grad(x,y)
此法的缺点是增强的图像仅显示灰度变化比较陡的边缘轮廓,而灰度变化比较平缓或均匀的区域呈黑色。
锐化图像2:
T为阈值。适当选取T,可使边缘轮廓突出,又不会破坏原来灰度变化计较平缓的背景
锐化图像3:
T为阈值,适当选取T。背景用固定灰度级表示,便于观察边缘灰度变化。
(2)采用Krisch算子,采用增强图像方法一,阈值分别设置为0.4、0.7、0.95