班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.的相反数是( )
A. B.2 C. D.
2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
A.﹣5 B.﹣3 C.3 D.1
3.已知a,b满足方程组则a+b的值为( )
A.﹣4 B.4 C.﹣2 D.2
4.若关于x的方程=3的解为正数,则m的取值范围是( )
A.m< B.m<且m≠
C.m>﹣ D.m>﹣且m≠﹣
5.已知一个多边形的内角和为1080°,则这个多边形是( )
A.九边形 B.八边形 C.七边形 D.六边形
6.如果=1,那么a的取值范围是( )
A. B. C. D.
7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )
A.90° B.60° C.45° D.30°
9.如图所示,下列推理及括号中所注明的推理依据错误的是( )
A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)
B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)
C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)
D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)
10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )
A. B.1 C. D.2
二、填空题(本大题共6小题,每小题3分,共18分)
1.分解因式:__________.
2.若|x|=3,y2=4,且x>y,则x﹣y=__________.
3.使有意义的x的取值范围是________.
4.如图,将三个同样的正方形的一个顶点重合放置,那么的度数为__________.
5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.
6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
三、解答题(本大题共6小题,共72分)
1.解方程组:
2.先化简,再求值:,其中.
3.已知,且,.
(1)求b的取值范围
(2)设,求m的最大值.
4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.
5.如图,有一个直角三角形纸片,两直角边cm, cm,现将直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?
6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.
(1)求A,B两种型号的机器人每小时分别搬运多少材料;
(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?
参
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、D
3、B
4、B
5、B
6、C
7、C
8、C
9、D
10、B
二、填空题(本大题共6小题,每小题3分,共18分)
1、
2、1或5.
3、
4、20°.
5、3
6、8
三、解答题(本大题共6小题,共72分)
1、.
2、,
3、(1);(2)2
4、略.
5、CD的长为3cm.
6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.