1.[2014高考真题·新课标全国卷Ⅰ] 已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )
A.[-2,-1] B.[-1,2)
B.[-1,1] D.[1,2)
1.A [解析] 集合A=(-∞,-1]∪[3,+∞),所以A∩B=[-2,-1].
2.[2014高考真题·新课标全国卷Ⅰ] =( )
A.1+i B.1-i
C.-1+i D.-1-i
2.D [解析] ===-1-i.
3.[2014高考真题·新课标全国卷Ⅰ] 设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )
A.f(x)g(x)是偶函数
B.|f(x)|g(x)是奇函数
C.f(x)|g(x)|是奇函数
D.|f(x)g(x)|是奇函数
3.C [解析] 由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.
4.[2014高考真题·新课标全国卷Ⅰ] 已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )
A. B.3
C.m D.3m
4.A [解析] 双曲线的一条渐近线的方程为x+y=0.根据双曲线方程得a2=3m,b2=3,所以c=,双曲线的右焦点坐标为(,0).故双曲线的一个焦点到一条渐近线的距离为=.
5.[2014高考真题·新课标全国卷Ⅰ] 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )
A. B.
C. D.
5.D [解析] 每位同学有2种选法,基本事件的总数为24=16,其中周六、周日中有一天无人参加的基本事件有2个,故周六、周日都有同学参加公益活动的概率为1-=.
图11
6.、[2014高考真题·新课标全国卷Ⅰ] 如图11,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图像大致为( )
A B
C D
6.C [解析] 根据三角函数的定义,点M(cos x,0),△OPM的面积为|sin xcos x|,在直角三角形OPM中,根据等积关系得点M到直线OP的距离,即f(x)=|sin xcos x|=|sin 2x|,且当x=时上述关系也成立, 故函数f(x)的图像为选项C中的图像.
7.[2014高考真题·新课标全国卷Ⅰ] 执行如图12所示的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )
图12
A. B. C. D.
7.D [解析] 逐次计算,依次可得:M=,a=2,b=,n=2;M=,a=,b=,n=3;M=,a=,b=,n=4.此时输出M,故输出的是.
8.[2014高考真题·新课标全国卷Ⅰ] 设α∈,β∈,且tan α=,则( )
A.3α-β= B.3α+β=
C.2α-β= D.2α+β=
8.C [解析] tan α===
==tan,因为β∈,所以+∈,又α∈且tan α=tan,所以α=,即2α-β=.
9.、[2014高考真题·新课标全国卷Ⅰ] 不等式组的解集记为D,有下面四个命题:
p1:∀(x,y)∈D,x+2y≥-2,
p2:∃(x,y)∈D,x+2y≥2,
p3:∀(x,y)∈D,x+2y≤3,
p4:∃(x,y)∈D,x+2y≤-1.
其中的真命题是( )
A.p2,p3 B.p1,p2
C.p1,p4 D.p1,p3
9.B [解析] 不等式组表示的区域D如图中的阴影部分所示,设目标函数z=x+2y,根据目标函数的几何意义可知,目标函数在点A(2,-1)处取得最小值,且zmin=2-2=0,即x+2y的取值范围是[0,+∞),故命题p1,p2为真,命题p3,p4为假.
10.[2014高考真题·新课标全国卷Ⅰ] 已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若=4,则|QF|=( )
A. B.3
C. D.2
10.B [解析] 由题知F(2,0),设P(-2,t),Q(x0,y0),则FP=(-4,t),=(x0-2,y0),由FP=4FQ,得-4=4(x0-2),解得x0=1,根据抛物线定义得|QF|=x0+2=3.
11.[2014高考真题·新课标全国卷Ⅰ] 已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )
A.(2,+∞) B.(1,+∞)
C.(-∞,-2) D.(-∞,-1)
11.C [解析] 当a=0时,f(x)=-3x2+1,存在两个零点,不符合题意,故a≠0.
由f′(x)=3ax2-6x=0,得x=0或x=.
若a<0,则函数f(x)的极大值点为x=0,且f(x)极大值=f(0)=1,极小值点为x=,且f(x)极小值=f=,此时只需>0,即可解得a<-2;
若a>0,则f(x)极大值=f(0)=1>0,此时函数f(x)一定存在小于零的零点,不符合题意.
综上可知,实数a的取值范围为(-∞,-2).
12.[2014高考真题·新课标全国卷Ⅰ] 如图13,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )
图13
A.6 B.6 C.4 D.4
12.B [解析] 该几何体是如图所示的棱长为4的正方体内的三棱锥E CC1D1(其中E为BB1的中点),其中最长的棱为D1E==6.
13.[2014高考真题·新课标全国卷Ⅰ] (x-y)(x+y)8的展开式中x2y7的系数为________.(用数字填写答案)
13.-20 [解析] (x+y)8的展开式中xy7的系数为C=8,x2y6的系数为C=28,故(x-y)(x+y)8的展开式中x2y8的系数为8-28=-20.
14.[2014高考真题·新课标全国卷Ⅰ] 甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三人去过同一城市.
由此可判断乙去过的城市为________.
14.A [解析] 由于甲没有去过B城市,乙没有去过C城市,但三人去过同一个城市,故三人去过的城市为A城市.又由于甲最多去过两个城市,且去过的城市比乙多,故乙只能去过一个城市,这个城市为A城市.
15.[2014高考真题·新课标全国卷Ⅰ] 已知A,B,C为圆O上的三点,若=(+),则与的夹角为________.
15.90° [解析] 由题易知点O为BC的中点,即BC为圆O的直径,故在△ABC中,BC对应的角A为直角,即AC与AB的夹角为90°.
16.[2014高考真题·新课标全国卷Ⅰ] 已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)·(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为________.
16. [解析] 根据正弦定理和a=2可得(a+b)(a-b)=(c-b)c,故得b2+c2-a2=bc,根据余弦定理得cos A==,所以A=.根据b2+c2-a2=bc及基本不等式得bc≥2bc-a2,即bc≤4,所以△ABC面积的最大值为×4×=.
17.、[2014高考真题·新课标全国卷Ⅰ] 已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.
(1)证明:an+2-an=λ.
(2)是否存在λ,使得{an}为等差数列?并说明理由.
17.解:(1)证明:由题设,anan+1=λSn-1,an+1an+2=λSn+1-1,
两式相减得an+1(an+2-an)=λan+1.
因为an+1≠0,所以an+2-an=λ.
(2)由题设,a1=1,a1a2=λS1-1,可得 a2=λ-1,
由(1)知,a3=λ+1.
若{an}为等差数列,则2a2=a1+a3,解得λ=4,故an+2-an=4.
由此可得{a2n-1}是首项为1,公差为4的等差数列,
a2n-1=4n-3;
{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.
所以an=2n-1,an+1-an=2.
因此存在λ=4,使得数列{an}为等差数列.
18.、[2014高考真题·新课标全国卷Ⅰ] 从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图14所示的频率分布直方图:
图14
(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.
(i)利用该正态分布,求P(187.8 附:≈12.2. 若Z~N(μ,σ2),则p(μ-σ =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200. s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150. (2)(i)由(1)知,Z~N(200,150),从而P(187.8 19.G5、G11[2014高考真题·新课标全国卷Ⅰ] 如图15,三棱柱ABC A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. 图15 (1)证明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A A1B1 C1的余弦值. 19.解:(1)证明:连接BC1,交B1C于点O,连接AO,因为侧面BB1C1C为菱形,所以B1C⊥BC1,且O为B1C及BC1的中点. 又AB⊥B1C,所以B1C⊥平面ABO. 由于AO⊂平面ABO,故B1C⊥AO. 又B1O=CO,故AC=AB1. (2)因为AC⊥AB1,且O为B1C的中点,所以AO=CO. 又因为AB=BC,所以△BOA≌ △BOC.故OA⊥OB,从而OA,OB,OB1两两垂直. 以O为坐标原点,OB的方向为x轴正方向,|OB|为单位长,建立如图所示的空间直角坐标系O xyz. 因为∠CBB1=60°,所以△CBB1为等边三角形,又AB=BC,则A,B(1,0,0),B1,C. =, =AB=, 1=BC=. 设n=(x,y,z)是平面AA1B1的法向量,则 即 所以可取n=(1,,). 设m是平面A1B1C1的法向量, 则 同理可取m=(1,-,). 则cos〈n,m〉==. 所以结合图形知二面角A A1B1 C1的余弦值为. 20.、、[2014高考真题·新课标全国卷Ⅰ] 已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点. (1)求E的方程; (2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程. 20.解:(1)设F(c,0),由条件知,=,得c=. 又=,所以a=2,b2=a2-c2=1. 故E的方程为+y2=1. (2)当l⊥x轴时不合题意, 故可设l:y=kx-2,P(x1,y1),Q(x2,y2). 将y=kx-2代入+y2=1得(1+4k2)x2-16kx+12=0, 当Δ=16(4k2-3)>0,即k2>时, x1,2=, 从而|PQ|=|x1-x2| =. 又点O到直线l的距离d=. 所以△OPQ的面积 S△OPQ=d·|PQ|=. 设=t,则t>0,S△OPQ==. 因为t+≥4,当且仅当t=2,即k=±时等号成立,满足Δ>0, 所以,当△OPQ的面积最大时,k=±,l的方程为y=x-2或y=-x-2. 21.、[2014高考真题·新课标全国卷Ⅰ] 设函数f(x)=aexln x+,曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2. (1)求a,b; (2)证明:f(x)>1. 21.解:(1)函数f(x)的定义域为(0,+∞), f′(x)=aexln x+ex-ex-1+ex-1. 由题意可得f(1)=2,f′(1)=e,故a=1,b=2. (2)证明:由(1)知,f(x)=exln x+ex-1, 从而f(x)>1等价于xln x>xe-x-. 设函数g(x)=xln x, 则g′(x)=1+ln x, 所以当x∈时,g′(x)<0; 当x∈时,g′(x)>0. 故g(x)在上单调递减,在上单调递增,从而g(x)在(0,+∞)上的最小值为g=-. 设函数h(x)=xe-x-,则h′(x)=e-x(1-x). 所以当x∈(0,1)时,h′(x)>0; 当x∈(1,+∞)时,h′(x)<0. 故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-. 因为gmin(x)=g=h(1)=hmax(x), 所以当x>0时,g(x)>h(x),即f(x)>1. 22.[2014高考真题·新课标全国卷Ⅰ] 选修41:几何证明选讲 如图16,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE. 图16 (1)证明:∠D=∠E; (2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形. 22.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E. (2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上. 又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD, 所以AD∥BC,故∠A=∠CBE. 又∠CBE=∠E,故∠A=∠E,由(1)知,∠D=∠E,所以△ADE为等边三角形. 23.[2014高考真题·新课标全国卷Ⅰ] 选修44:坐标系与参数方程 已知曲线C:+=1,直线l:(t为参数). (1)写出曲线C的参数方程,直线l的普通方程; (2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 23.解:(1)曲线C的参数方程为(θ为参数), 直线l的普通方程为2x+y-6=0. (2)曲线C上任意一点P(2cos θ,3sin θ)到l的距离 d=|4cos θ+3sin θ-6|, 则|PA|==|5sin(θ+α)-6|, 其中α为锐角,且tan α=. 当sin(θ+α)=-1时,|PA|取得最大值,最大值为. 当sin(θ+α)=1时,|PA|取得最小值,最小值为. 24.[2014高考真题·新课标全国卷Ⅰ] 选修45:不等式选讲 若a>0,b>0,且+=. (1)求a3+b3的最小值. (2)是否存在a,b,使得2a+3b=6?并说明理由.24.解:(1)由=+≥,得ab≥2,当且仅当a=b=时等号成立. 故a3+b3≥2≥4 ,当且仅当a=b= 时等号成立. 所以a3+b3的最小值为4. (2)由(1)知,2a+3b≥2≥4. 由于4>6,从而不存在a,b,使2a+3b=6.