
班级 姓名 座号
一、选择题:
1.(2009陕西卷文)“”是“方程”表示焦点在y轴上的椭圆”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D) 既不充分也不必要条件
2.(天津卷)设椭圆(,)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为( )
(A) (B) (C) (D)
3.(2010福建文数)若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为( )
A.2 B.3 C.6 D.8
4.(2010广东文数)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )
A. B. C. D.
5.(2009浙江文)已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴, 直线交轴于点.若,则椭圆的离心率是( )
A. B. C. D.
6.(2009江西卷理)过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为( )
A. B. C. D.
7.(2010全国卷2文数)已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线于C相交于A、B两点,若。则k =( )
(A)1 (B) (C) (D)2
8.(2010四川理数)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是( )
(A) (B) (C) (D)
二、填空题:
9.(2009北京文)椭圆的焦点为,点P在椭圆上,若,则 ;的大小为 .
10.(2009年上海卷理)已知、是椭圆(>>0)的两个焦点,为椭圆上一点,且.若的面积为9,则=____________.
11.设AB是过椭圆的左焦点F的弦,若AB的倾斜角为,则AB的弦长是 .
12.(2009广东卷理)巳知椭圆的中心在坐标原点,长轴在轴上,离心率为,且上一点到的两个焦点的距离之和为12,则椭圆的方程为 .
13.(2009重庆卷文)已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 .
三、解答题:
14.(2009浙江理)已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为.求椭圆的方程;
15. 设F为椭圆C:的左焦点,点P为椭圆C上任意一点,若PF的中点为M,当P在椭圆上运动时,求点 M的轨迹方程。
16.(2010浙江理数)已知m>1,直线,椭圆,分别为椭圆的左、右焦点.当直线过右焦点时,求直线的方程;
17.(2010福建理数)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。(1)求椭圆C的方程;
(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。
18.(2009年广东卷文)已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.
(1)求椭圆G的方程;(2)求的面积
19.(2009辽宁卷文)已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
20.(2010辽宁文数)设,分别为椭圆的左、右焦点,过的直线与椭圆 相交于,两点,直线的倾斜角为,到直线的距离为.
(Ⅰ)求椭圆的焦距;(Ⅱ)如果,求椭圆的方程.
21.(2009山东卷理)设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由。
