
基础自测
1.(2008· 福建理,4)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(-a)的值为 ( )
A.3 B.0 C.-1 D.-2
答案 B
2.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为 ( )
A.-1 B.0 C.1 D.2
答案 B
3.(2009·新郑二中模拟)设偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系为 ( )
A.f(a+1)≥f(b+2) B.f(a+1)≤f(b+2)
C.f(a+1)<f(b+2) D.f(a+1)>f(b+2)
答案 D
4.已知f(x)=是奇函数,则实数a的值等于 ( )
A.1 B.-1 C.0 D.±1
答案 A
5.函数f(x),g(x)在区间[-a,a] (a>0)上都是奇函数,则下列结论:①f(x)-g(x)在[-a,a]上是奇函数;②f(x)+g(x)在[-a,a]上是奇函数;③f(x)·g(x)在[-a,a]上是偶函数;④f(0)+g(0)=0,其中正确的个数是( )
A.1 B.2 C.3 D.4
答案 D
例1 判断下列函数的奇偶性.
(1)f(x)=;
(2)f(x)=log2(x+) (x∈R);
(3)f(x)=lg|x-2|.
解 (1)∵x2-1≥0且1-x2≥0,∴x=±1,即f(x)的定义域是{-1,1}.
∵f(1)=0,f(-1)=0,∴f(1)=f(-1),f(-1)=-f(1),
故f(x)既是奇函数又是偶函数.
(2)方法一 易知f(x)的定义域为R,
又∵f(-x)=log2[-x+]=log2=-log2(x+)=-f(x),
∴f(x)是奇函数.
方法二 易知f(x)的定义域为R,
又∵f(-x)+f(x)=log2[-x+]+log2(x+)=log21=0,即f(-x)=-f(x),
∴f(x)为奇函数.
(3)由|x-2|>0,得x≠2.
∴f(x)的定义域{x|x≠2}关于原点不对称,故f(x)为非奇非偶函数.
例2 已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)如果x∈R+,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.
(1)证明 ∵函数定义域为R,其定义域关于原点对称.
∵f(x+y)=f(x)+f(y),令y=-x,∴f(0)=f(x)+f(-x).令x=y=0,
∴f(0)=f(0)+f(0),得f(0)=0.∴f(x)+f(-x)=0,得f(-x)=-f(x),
∴f(x)为奇函数.
(2)解 方法一 设x,y∈R+,∵f(x+y)=f(x)+f(y),
∴f(x+y)-f(x)=f(y). ∵x∈R+,f(x)<0,
∴f(x+y)-f(x)<0, ∴f(x+y)<f(x).
∵x+y>x, ∴f(x)在(0,+∞)上是减函数.又∵f(x)为奇函数,f(0)=0,
∴f(x)在(-∞,+∞)上是减函数.∴f(-2)为最大值,f(6)为最小值.
∵f(1)=-,∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.
∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3.
方法二 设x1<x2,且x1,x2∈R.
则f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1).
∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)-f(x1)<0.即f(x)在R上单调递减.
∴f(-2)为最大值,f(6)为最小值.∵f(1)=-,
∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.
∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3.
例3 (12分)已知函数f(x)的定义域为R,且满足f(x+2)=-f(x) .
(1)求证:f(x)是周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)= x,求使f(x)=-在[0,2 009]上的所有x的个数.
(1)证明 ∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=-[-f(x)]=f(x), 2分
∴f(x)是以4为周期的周期函数. 3分
(2)解 当0≤x≤1时,f(x)= x,
设-1≤x≤0,则0≤-x≤1,∴f(-x)=(-x)=-x.
∵f(x)是奇函数,∴f(-x)=-f(x),
∴-f(x)=-x,即f(x)= x. 5分
故f(x)= x(-1≤x≤1) 6分
又设1<x<3,则-1<x-2<1,
∴f(x-2)= (x-2), 7分
又∵f(x-2)=-f(2-x)=-f((-x)+2)=-[-f(-x)]=-f(x),
∴-f(x)=(x-2),
∴f(x)=-(x-2)(1<x<3). 8分
∴f(x)= 9分
由f(x)=-,解得x=-1.
∵f(x)是以4为周期的周期函数.
故f(x)=-的所有x=4n-1 (n∈Z). 10分
令0≤4n-1≤2 009,则≤n≤,
又∵n∈Z,∴1≤n≤502 (n∈Z),
∴在[0,2 009]上共有502个x使f(x)=-. 12分
1.判断下列各函数的奇偶性:
(1)f(x)=(x-2);
(2)f(x)=;
(3)f(x)=
解 (1)由≥0,得定义域为[-2,2),关于原点不对称,故f(x)为非奇非偶函数.
(2)由得定义域为(-1,0)∪(0,1).
这时f(x)=.
∵f(-x)=-∴f(x)为偶函数.
(3)x<-1时,f(x)=x+2,-x>1,∴f(-x)=-(-x)+2=x+2=f(x).
x>1时,f(x)=-x+2,-x<-1,f(-x)=x+2=f(x).
-1≤x≤1时,f(x)=0,-1≤-x≤1,f(-x)=0=f(x).
∴对定义域内的每个x都有f(-x)=f(x).因此f(x)是偶函数.
2.已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)=-3.
(1)证明:函数y=f(x)是R上的减函数;
(2)证明:函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m,n∈Z)上的值域.
(1)证明 设x1,x2∈R,且x1<x2, f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1).
∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)=f(x1)+f(x2-x1)<f(x1).故f(x)是R上的减函数.
(2)证明 ∵f(a+b)=f(a)+f(b)恒成立,∴可令a=-b=x,则有f(x)+f(-x)=f(0),
又令a=b=0,则有f(0)=f(0)+f(0),∴f(0)=0.从而x∈R,f(x)+f(-x)=0,
∴f(-x)=-f(x).故y=f(x)是奇函数.
(3)解 由于y=f(x)是R上的单调递减函数,
∴y=f(x)在[m,n]上也是减函数,故f(x)在[m,n]上的最大值f(x)max=f(m),最小值f(x)min=f(n).
由于f(n)=f(1+(n-1))=f(1)+f(n-1)=…=n f(1),同理f(m)=mf(1).
又f(3)=3f(1)=-3,∴f(1)=-1,∴f(m)=-m,f(n)=-n.∴函数y=f(x)在[m,n]上的值域为[-n,-m].
3.设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x2∈[0,]都有f(x1+x2)=f(x1)·f(x2),
且f(1)=a>0.
(1)求f()及f();
(2)证明:f(x)是周期函数;
(3)记an=f(2n+,求an.
(1)解 ∵对x1、x2∈,都有f(x1+x2)=f(x1)·f(x2),
∴f(x)=f(≥0,x∈[0,1].
∴f(1)=f(
f(.
∵f(1)=a>0, ∴f(
(2)证明 ∵y=f(x)的图象关于直线x=1对称,
∴f(x)=f(1+1-x),即f(x)=f(2-x),x∈R.
又由f(x)是偶函数知,f(-x)=f(x),x∈R,
∴f(-x)=f(2-x),x∈R.
将上式中-x用x代换,得f(x)=f(x+2),x∈R.
这表明f(x)是R上的周期函数,且2是它的一个周期.
(3)解 由(1)知f(x)≥0,x∈[0,1].
∵f(=f(…
=f(…·f(又f(
∵f(x)的一个周期是2,∴an=f(2n+)=f(),∴an=a.
一、选择题
1. f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的 ( )
A.充要条件 B.充分而不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
答案 B
2.(2008·重庆理,6)若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是 ( )
A.f(x)为奇函数 B.f(x)为偶函数
C.f(x)+1为奇函数 D.f(x)+1为偶函数
答案 C
3.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(0)
=2,则f(2 008)的值为
A.2 B.0 C.-2 D.±2
答案 A
4.已知函数y=f(x)是定义在R上的奇函数,则下列函数中是奇函数的是 ( )
①y=f(|x|); ②y=f(-x); ③y=x·f(x); ④y=f(x)+x.
A.①③ B.②③ C.①④ D.②④
答案 D
5.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0,且x1+x2>0,则 ( )
A.f(x1)>f(-x2) B.f(-x1)=f(-x2)
C.f(-x1)<f(-x2) D.f(-x1)与f(-x2)大小不确定
答案 A
6.已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则在R上f(x)的表达式为 ( )
A.-x(x-2)
B.x(|x|-2)
C.|x|(x-2)
D.|x|(|x|-2)
答案 B
二、填空题
7.已知函数f(x)=g(x)+2,x∈[-3,3],且g(x)满足g(-x)=-g(x),若f(x)的最大值、最小值分别为M、N,则M+N= .答案 4
8.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)= .
答案 -b+4
三、解答题
9.已知f(x)是实数集R上的函数,且对任意xR,f(x)=f(x+1)+f(x-1)恒成立.
(1)求证:f(x)是周期函数.
(2)已知f(3)=2,求f(2 004).
(1)证明 ∵f(x)=f(x+1)+f(x-1)∴f(x+1)=f(x)-f(x-1),
则f(x+2)=f
∴f(x+3)=f
f(x+6)=f
∴f(x)是周期函数且6是它的一个周期.
(2)解 f(2 004)=f(334×6)=f(0)=-f(3)=-2.
10.已知f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式.
解 ∵f(x)是奇函数,可得f(0)=-f(0),∴f(0)=0.
当x>0时,-x<0,由已知f(-x)=xlg(2+x),∴-f(x)=xlg(2+x),
即f(x)=-xlg(2+x) (x>0).∴f(x)=
即f(x)=-xlg(2+|x|) (x∈R).
11.已知函数f(x)=x2+|x-a|+1,a∈R.
(1)试判断f(x)的奇偶性;
(2)若-≤a≤,求f(x)的最小值.
解 (1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),
此时,f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,
f(a)≠f(-a),f(a)≠-f(-a),此时,f(x) 为非奇非偶函数.
(2)当x≤a时,f(x)=x2-x+a+1=(x-)2+a+,
∵a≤,故函数f(x)在(-∞,a]上单调递减,
从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.
当x≥a时,函数f(x)=x2+x-a+1=(x+)2-a+,
∵a≥-,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.
综上得,当-≤a≤时,函数f(x)的最小值为a2+1.
12.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.
(1)试判断函数y=f(x)的奇偶性;
(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论
解(1)由 从而知函数y=f(x)的周期为T=10.又f(3)=f(1)=0,而f(7)≠0,故f(-3)≠0.
故函数y=f(x)是非奇非偶函数.
(2)由(1)知y=f(x)的周期为10.
又f(3)=f(1)=0,f(11)=f(13)=f(-7)=f(-9)=0,
故f(x)在[0,10]和[-10,0]上均有两个解,从而可知函数y=f(x)在[0,2 005]上有402个解,在[-2 005,0]上有400个解,所以函数y=f(x)在[-2 005,2 005]上有802个解.
