
一、二次函数 真题与模拟题分类汇编(难题易错题)
1.如图,抛物线y =12
x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).
(1)求抛物线的解析式及顶点D 的坐标;
(2)判断△ABC 的形状,证明你的结论;
(3)点M 是抛物线对称轴上的一个动点,当MC +MA 的值最小时,求点M 的坐标.
【答案】(1)抛物线的解析式为y =213x -22x ﹣2,顶点D 的坐标为 (32,﹣258
);(2)△ABC 是直角三角形,证明见解析;(3)点M 的坐标为(
32,﹣54). 【解析】
【分析】 (1)因为点A 在抛物线上,所以将点A 代入函数解析式即可求得答案;
(2)由函数解析式可以求得其与x 轴、y 轴的交点坐标,即可求得AB 、BC 、AC 的长,由勾股定理的逆定理可得三角形的形状;
(3)根据抛物线的性质可得点A 与点B 关于对称轴x 32
=对称,求出点B ,C 的坐标,根据轴对称性,可得MA =MB ,两点之间线段最短可知,MC +MB 的值最小.则BC 与直线x 32
=
交点即为M 点,利用得到系数法求出直线BC 的解析式,即可得到点M 的坐标. 【详解】 (1)∵点A (﹣1,0)在抛物线y 212x =+bx ﹣2上,∴2112⨯-+()b ×(﹣1)﹣2=0,解得:b 32=-
,∴抛物线的解析式为y 21322x =-x ﹣2. y 21322x =-x ﹣212=(x 2﹣3x ﹣4 )21325228x =--(),∴顶点D 的坐标为 (3
2528
,-). (2)当x =0时y =﹣2,∴C (0,﹣2),OC =2. 当y =0时,
21322x -x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0),∴OA =1,OB =4,AB
∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.
(3)∵顶点D的坐标为(325 28,-
),∴抛物线的对称轴为x
3
2
=.
∵抛物线y1
2
=x2+bx﹣2与x轴交于A,B两点,∴点A与点B关于对称轴x
3
2
=对称.∵A(﹣1,0),∴点B的坐标为(4,0),当x=0时,y2
13
22
x
=-x﹣2=﹣2,则点C 的坐标为(0,﹣2),则BC与直线x
3
2
=交点即为M点,如图,根据轴对称性,可得:MA=MB,两点之间线段最短可知,MC+MB的值最小.
设直线BC的解析式为y=kx+b,把C(0,﹣2),B(4,0)代入,可得:
2
40
b
k b
=-
⎧
⎨
+=
⎩
,解得:
1
2
2
k
b
⎧
=
⎪
⎨
⎪=-
⎩
,∴y
1
2
=x﹣2.
当x
3
2
=时,y
135
2
224
=⨯-=-,∴点M的坐标为(
35
24
-,).
【点睛】
本题考查了待定系数法求二次函数解析式、一次函数的解析式、直角三角形的性质及判定、轴对称性质,解决本题的关键是利用待定系数法求函数的解析式.
2.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=
1
2
DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点
M 的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x 2﹣3x+4;(2)①P (﹣1,6),②存在,M (﹣1,11)或(﹣1,311)或(﹣1,﹣1)或(﹣1,
132). 【解析】
【分析】
(1)先根据已知求点A 的坐标,利用待定系数法求二次函数的解析式;
(2)①先得AB 的解析式为:y=-2x+2,根据PD ⊥x 轴,设P (x ,-x 2-3x+4),则E (x ,-2x+2),根据PE=12
DE ,列方程可得P 的坐标; ②先设点M 的坐标,根据两点距离公式可得AB ,AM ,BM 的长,分三种情况:△ABM 为直角三角形时,分别以A 、B 、M 为直角顶点时,利用勾股定理列方程可得点M 的坐标.
【详解】
解:(1)∵B (1,0),∴OB=1,
∵OC=2OB=2,∴C (﹣2,0),
Rt △ABC 中,tan ∠ABC=2, ∴
AC 2BC =, ∴AC 23
=, ∴AC=6, ∴A (﹣2,6), 把A (﹣2,6)和B (1,0)代入y=﹣x 2
+bx+c 得:42610b c b c --+=⎧⎨-++=⎩, 解得:34b c =-⎧⎨=⎩
, ∴抛物线的解析式为:y=﹣x 2﹣3x+4;
(2)①∵A (﹣2,6),B (1,0),
∴AB 的解析式为:y=﹣2x+2,
设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),
∵PE=1
2
DE,
∴﹣x2﹣3x+4﹣(﹣2x+2)=1
2
(﹣2x+2),
∴x=-1或1(舍),
∴P(﹣1,6);
②∵M在直线PD上,且P(﹣1,6),
设M(﹣1,y),
∵B(1,0),A(﹣2,6)
∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,
BM2=(1+1)2+y2=4+y2,
AB2=(1+2)2+62=45,
分三种情况:
i)当∠AMB=90°时,有AM2+BM2=AB2,
∴1+(y﹣6)2+4+y2=45,
解得:y=311,
∴M(﹣1,11)或(﹣1,311
ii)当∠ABM=90°时,有AB2+BM2=AM2,
∴45+4+y2=1+(y﹣6)2,∴y=﹣1,
∴M(﹣1,﹣1),
iii)当∠BAM=90°时,有AM2+AB2=BM2,
∴1+(y﹣6)2+45=4+y2,∴y=13
2
,
∴M(﹣1,13
2
);
综上所述,点M的坐标为:∴M(﹣1,11)或(﹣1,311)或(﹣1,﹣1)或
(﹣1,13
2
).
【点睛】
此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理
的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.
3.如图,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .
(1)求抛物线的函数表达式;
(2)求直线BC 的函数表达式;
(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.
①当线段PQ =34
AB 时,求tan ∠CED 的值; ②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.
【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①
23.①P 1(122),P 2(16,74). 【解析】
【分析】
已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式.
【详解】
(1)∵抛物线的对称轴为直线x=1, ∴− 221
b
b a
-⨯==1 ∴b=-2 ∵抛物线与y 轴交于点C (0,-3),
∴c=-3,
∴抛物线的函数表达式为y=x 2-2x-3;
(2)∵抛物线与x 轴交于A 、B 两点,
∴x1=-1,x2=3.
∵A点在B点左侧,
∴A(-1,0),B(3,0)
设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,
则
03
3
k m
m
=
=
+
⎧
⎨
-
⎩
,
∴
1
3 k
m
⎧
⎨
-⎩
=
=
∴直线BC的函数表达式为y=x-3;
(3)①∵AB=4,PQ=3
4 AB,
∴PQ=3
∵PQ⊥y轴∴PQ∥x轴,
则由抛物线的对称性可得PM=3
2
,
∵对称轴是直线x=1,∴P到y轴的距离是1
2
,
∴点P的横坐标为−1
2
,
∴P(−1
2,−
7
4
)
∴F(0,−7
4
),
∴FC=3-OF=3-7
4
=
5
4
∵PQ垂直平分CE于点F,
∴CE=2FC=5 2
∵点D在直线BC上,
∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,
∴DG=1,CG=1,
∴GE=CE-CG=5
2
-1=
3
2
.
在Rt△EGD中,tan∠CED=
2
3 GD
EG
=.
②P1(2,-2),P2(6
-
5
2
).
设OE=a,则GE=2-a,
当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),
∴1=1×(2-a),
∴a=1,
∴CE=2,
∴OF=OE+EF=2
∴F、P的纵坐标为-2,
把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.
∴P1(2-2),
当CD为斜边时,DE⊥CE,
∴OE=2,CE=1,
∴OF=2.5,
∴P和F的纵坐标为:-5
2
,
把y=-5
2
,代入抛物线的函数表达式为y=x2-2x-3得:x=1-
6
2
1+
6
2
∵点P在第三象限.
∴P2(6-5
2
).
综上所述:满足条件为P1(2-2),P2(6
-
5
2
).
【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.
4.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量(件)与时间(天)的关系如下表:
时间(天)1361036…
日销售量(件)9490847624…
未来40天内,前20天每天的价格y1(元/件)与t时间(天)的函数关系式为:y1=t+25(1≤t≤20且t为整数);后20天每天的价格y2(原/件)与t时间(天)的函数关系式为:y2=—
t+40(21≤t≤40且t为整数).下面我们来研究这种商品的有关问题.
(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据之间的函数关系式;
(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.
【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.
【解析】
分析:(1)通过观察表格中的数据日销售量与时间t是均匀减少的,所以确定m与t是一次函数关系,利用待定系数法即可求出函数关系式;
(2)根据日销售量、每天的价格及时间t可以列出销售利润W关于t的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少;
(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数的性质求出a的取值范围.
详解:(1)设数m=kt+b,有,解得
∴m=-2t+96,经检验,其他点的坐标均适合以上
析式故所求函数的解析式为m=-2t+96.
(2)设日销售利润为P,
由P=(-2t+96)=t2-88t+1920=(t-44)2-16,
∵21≤t≤40且对称轴为t=44,
∴函数P在21≤t≤40上随t的增大而减小,
∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.
(3)P1=(-2t+96)
=-+(14+2a)t+480-96n,
∴对称轴为t=14+2a,
∵1≤t≤20,
∴14+2a≥20得a≥3时,P1随t的增大而增大,
又∵a<4,
∴3≤a<4.
点睛:解答本题的关键是要分析题意根据实际意义准确的求出解析式,并会根据图示得出所需要的信息.同时注意要根据实际意义准确的找到不等关系,利用不等式组求解.
5.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
【答案】(1)抛物线解析式为y=﹣1
2
x2+2x+6;(2)当t=3时,△PAB的面积有最大值;
(3)点P(4,6).
【解析】
【分析】(1)利用待定系数法进行求解即可得;
(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,
设P(t,﹣1
2
t2+2t+6),则N(t,﹣t+6),由
S△PAB=S△PAN+S△PBN=1
2
PN•AG+
1
2
PN•BM=
1
2
PN•OB列出关于t的函数表达式,利用二次函数
的性质求解可得;
(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即
可得出答案.
【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),
∴设抛物线解析式为y=a (x ﹣6)(x+2),
将点A (0,6)代入,得:﹣12a=6,
解得:a=﹣12, 所以抛物线解析式为y=﹣1
2(x ﹣6)(x+2)=﹣12
x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,
设直线AB 解析式为y=kx+b ,
将点A (0,6)、B (6,0)代入,得:
660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩
, 则直线AB 解析式为y=﹣x+6,
设P (t ,﹣
12
t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣
12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12
t 2+3t , ∴S △PAB =S △PAN +S △PBN
=12PN•AG+12
PN•BM =12
PN•(AG+BM ) =12
PN•OB =12×(﹣12
t 2+3t )×6 =﹣32t 2+9t
2
(t﹣3)2+
27
2
,
∴当t=3时,△PAB的面积有最大值;
(3)如图2,
∵PH⊥OB于H,
∴∠DHB=∠AOB=90°,
∴DH∥AO,
∵OA=OB=6,
∴∠BDH=∠BAO=45°,
∵PE∥x轴、PD⊥x轴,
∴∠DPE=90°,
若△PDE为等腰直角三角形,
则∠EDP=45°,
∴∠EDP与∠BDH互为对顶角,即点E与点A重合,
则当y=6时,﹣1
2
x2+2x+6=6,
解得:x=0(舍)或x=4,
即点P(4,6).
【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.
6.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.
【答案】(1)y=x2﹣3x。
(2)点B的坐标为:(4,4)。
(3)存在;理由见解析;
【解析】
【分析】
(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。
(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。
(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,求出OB,OP的长度即可求出△BOP的面积。
【详解】
解:(1)∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1。
∴这个二次函数的解析式为y=x2﹣3x。
(2)如图,过点B做BD⊥x轴于点D,
令x2﹣3x=0,解得:x=0或3。∴AO=3。
∵△AOB的面积等于6,∴1
2
AO•BD=6。∴BD=4。
∵点B在函数y=x2﹣3x的图象上,
∴4=x2﹣3x,解得:x=4或x=﹣1(舍去)。
又∵顶点坐标为:( 1.5,﹣2.25),且2.25<4,
∴x轴下方不存在B点。
∴点B的坐标为:(4,4)。
(3)存在。
∵点B的坐标为:(4,4),∴∠BOD=45°,22
BO442
=+=。若∠POB=90°,则∠POD=45°。
设P 点坐标为(x ,x 2﹣3x )。 ∴2x x 3x =-。 若2x x 3x =-,解得x="4" 或x=0(舍去)。此时不存在点P (与点B 重合)。 若()2x x 3x =--,解得x="2" 或x=0(舍去)。
当x=2时,x 2﹣3x=﹣2。
∴点P 的坐标为(2,﹣2)。 ∴22OP 2222=+=。
∵∠POB=90°,∴△POB 的面积为:12PO•BO=12×42×22=8。
7.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:
2y mx 2mx 3m =--(m <0)的顶点.
(1)求A 、B 两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;
(3)当△BDM 为直角三角形时,求m 的值.
【答案】(1)A (,0)、B (3,0).
(2)存在.S △PBC 最大值为
2716 (3)2m =1m =-时,△BDM 为直角三角形. 【解析】
【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.
(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.
(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.
【详解】
解:(1)令y=0,则2mx 2mx 3m 0--=,
∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.
∴A (,0)、B (3,0).
(2)存在.理由如下:
∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),
把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=
+-,即213y x x 22=--. 设P (p ,213p p 22
--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23
327p 4216--+
(). ∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),
∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.
∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:
当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+,
解得:12m =22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,
解得:1m 1=-,2m 1=(舍去) .
综上所述,2m 2
=-或1m =-时,△BDM 为直角三角形.
8.如图,抛物线y=ax 2+bx 过点B (1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A .
(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.
【答案】(1)抛物线的解析式为y=x2﹣4x,自变量x的取值范图是0≤x≤4;(2)△PAB的面积=15.
【解析】
【分析】
(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;
(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,设P(x,x2-4x),证明△PFA∽△AEB,求出点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.
【详解】
(1)由题意得,
3 2
2
a b
b
a
+-
⎧
⎪
⎨
-⎪
⎩
=
=
,
解得
1
4
a
b-
⎧
⎨
⎩
=
=
,
∴抛物线的解析式为y=x2-4x,
令y=0,得x2-2x=0,解得x=0或4,
结合图象知,A的坐标为(4,0),
根据图象开口向上,则y≤0时,自变量x的取值范围是0≤x≤4;
(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,
设P(x,x2-4x),
∵PA⊥BA
∴∠PAF+∠BAE=90°,
∵∠PAF+∠FPA=90°,
∴∠FPA=∠BAE
又∠PFA=∠AEB=90°
∴△PFA ∽△AEB, ∴PF AF AE BE =,即244213x x x --=-, 解得,x= −1,x=4(舍去)
∴x 2-4x=-5 ∴点P 的坐标为(-1,-5),
又∵B 点坐标为(1,-3),易得到BP 直线为y=-4x+1
所以BP 与x 轴交点为(
14,0) ∴S △PAB=
115531524
⨯⨯+= 【点睛】
本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.
9.如图,已知A (﹣2,0),B (4,0),抛物线y=ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y=﹣12
x ﹣1交于点C . (1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;
(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.
【答案】(1)抛物线解析式为:y=
211184x x --,抛物线对称轴为直线x=1;(2)存在P 点坐标为(1,﹣
12
);(3)N 点坐标为(4,﹣3)或(2,﹣1) 【解析】 分析:(1)由待定系数法求解即可;
(2)将四边形周长最小转化为PC+PO 最小即可;
(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N 坐标,表示点M 坐标代入抛物线解析式即可.
详解:(1)把A (-2,0),B (4,0)代入抛物线y=ax 2+bx-1,得
0421011a b a b --⎧⎨+-⎩
== 解得1814a b ⎧⎪⎪⎨
⎪-⎪⎩
== ∴抛物线解析式为:y=18x 2−14
x−1 ∴抛物线对称轴为直线x=-1
41228
b a -
=-⨯=1 (2)存在 使四边形ACPO 的周长最小,只需PC+PO 最小
∴取点C (0,-1)关于直线x=1的对称点C′(2,-1),连C′O 与直线x=1的交点即为P 点.
设过点C′、O 直线解析式为:y=kx
∴k=-
12
∴y=-12x 则P 点坐标为(1,-12
) (3)当△AOC ∽△MNC 时,
如图,延长MN 交y 轴于点D ,过点N 作NE ⊥y 轴于点E
∵∠ACO=∠NCD ,∠AOC=∠CND=90°
∴∠CDN=∠CAO
由相似,∠CAO=∠CMN
∴∠CDN=∠CMN
∵MN ⊥AC
∴M 、D 关于AN 对称,则N 为DM 中点
设点N 坐标为(a ,-12a-1) 由△EDN ∽△OAC
∴ED=2a
∴点D 坐标为(0,-
52a−1) ∵N 为DM 中点
∴点M 坐标为(2a ,
32a−1) 把M 代入y=
18x 2−14
x−1,解得 a=4
则N 点坐标为(4,-3)
当△AOC ∽△CNM 时,∠CAO=∠NCM
∴CM ∥AB 则点C 关于直线x=1的对称点C′即为点N
由(2)N (2,-1)
∴N 点坐标为(4,-3)或(2,-1)
点睛:本题为代数几何综合题,考查了待定系数、两点之间线段最短的数学模型构造、三角形相似.解答时,应用了数形结合和分类讨论的数学思想.
10.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC = (1)求抛物线的解析式及其对称轴;
(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;
(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.
【答案】(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小值为10131++;(3)12(4,5),(8,45)P P --
【解析】
【分析】
(1)OB=OC ,则点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,即可求解;
(2)CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;
(3)S △PCB :S △PCA =
12EB×(y C -y P ):12
AE×(y C -y P )=BE :AE ,即可求解. 【详解】
(1)∵OB=OC ,∴点B (3,0),
则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,
故-3a=3,解得:a=-1,
故抛物线的表达式为:y=-x 2+2x+3…①;
对称轴为:直线1x =
(2)ACDE 的周长=AC+DE+CD+AE ,其中AC=10、DE=1是常数,
故CD+AE 最小时,周长最小,
取点C 关于函数对称点C (2,3),则CD=C′D ,
取点A′(-1,1),则A′D=AE ,
故:CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,
四边形ACDE 的周长的最小值
=AC+DE+CD+AE=10+1+A′D+DC′=10+1+A′C′=10+1+13;
(3)如图,设直线CP 交x 轴于点E ,
直线CP 把四边形CBPA 的面积分为3:5两部分,
2
EB×(y C-y P):
1
2
AE×(y C-y P)=BE:AE,
则BE:AE,=3:5或5:3,
则AE=5
2
或
3
2
,
即:点E的坐标为(3
2
,0)或(
1
2
,0),
将点E、C的坐标代入一次函数表达式:y=kx+3,
解得:k=-6或-2,
故直线CP的表达式为:y=-2x+3或y=-6x+3…②
联立①②并解得:x=4或8(不合题意值已舍去),
故点P的坐标为(4,-5)或(8,-45).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.
