最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2012上海高考数学试题(理科)答案与解析

来源:动视网 责编:小OO 时间:2025-09-24 07:21:02
文档

2012上海高考数学试题(理科)答案与解析

2012上海高考数学试题(理科)答案与解析一.填空题1.计算:(为虚数单位).【答案】【解析】.【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合,,则.【答案】【解析】根据集合A,解得,由,所以.【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决.3.函数的值域是.【答案】【解析】根据题目,因为,所以.【点评】本题主要考查行列式的基本运
推荐度:
导读2012上海高考数学试题(理科)答案与解析一.填空题1.计算:(为虚数单位).【答案】【解析】.【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合,,则.【答案】【解析】根据集合A,解得,由,所以.【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决.3.函数的值域是.【答案】【解析】根据题目,因为,所以.【点评】本题主要考查行列式的基本运
2012上海高考数学试题(理科)答案与解析

一.填空题

1.计算:          (为虚数单位).

【答案】

【解析】.

【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.

2.若集合,,则         .

【答案】 

【解析】根据集合A ,解得,由,所以

.

【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决.

3.函数的值域是           .

【答案】 

【解析】根据题目,因为,所以.

【点评】本题主要考查行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质. 

4.若是直线的一个法向量,则的倾斜角的大小为          (结果用反三角函数值表示).

【答案】 

【解析】设直线的倾斜角为,则.

【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小.

5.在的二项展开式中,常数项等于           .

【答案】 

【解析】根据所给二项式的构成,构成的常数项只有一项,就是 .

【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.

6.有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则         .

【答案】 

【解析】由正方体的棱长组成以为首项,为公比的等比数列,可知它们的体积则组成了一个以1为首项,为公比的等比数列,因此, .

【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合.

7.已知函数(为常数).若在区间上是增函数,则的取值范围是       .

【答案】

【解析】根据函数看出当时函数增函数,而已知函数在区间上为增函数,所以的取值范围为: .

【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.

8.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为        .

【答案】

【解析】根据该圆锥的底面圆的半径为,母线长为,根据条件得到,解得母线长,所以该圆锥的体积为:.

【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题.

9.已知是奇函数,且,若,则      .

【答案】 

【解析】因为函数为奇函数,所以  .

【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数为奇函数,所以有这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.

10.如图,在极坐标系中,过点的直线与极轴的夹角,

若将的极坐标方程写成的形式,则           .

【答案】

【解析】根据该直线过点,可以直接写出代数形式的方程为:,将此化成极坐标系下的参数方程即可 ,化简得.

【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.

11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是          (结果用最简分数表示).

【答案】

【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为.

【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.

12.在平行四边形中,,边、的长分别为2、1,若、分别是边、上的点,且满足,则的取值范围是          .

【答案】

【解析】以向量所在直线为轴,以向量所在直线为轴建立平面直角坐标系,如图所示,因为,所以  设根据题意,有.

所以,所以 

【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.

13.已知函数的图象是折线段,其中、、,

函数()的图象与轴围成的图形的面积为            .

【答案】

【解析】根据题意得到,从而得到所以围成的面积为,所以围成的图形的面积为 .

【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大.

14.如图,与是四面体中互相垂直的棱,若,

且,其中、为常数,则四面体的体积的最

大值是       .

【答案】 

【解析】据题,也就是说,线段的长度是定值,因为棱与棱互相垂直,当时,此时有最大值,此时最大值为:.

【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题.

二、选择题(20分)

15.若是关于的实系数方程的一个复数根,则(    )

A.      B.      C.       D.

【答案】 B 

【解析】根据实系数方程的根的特点也是该方程的另一个根,所以

,即,,故答案选择B.

【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.

16.在中,若,则的形状是(    )

A.锐角三角形       B.直角三角形       C.钝角三角形           D.不能确定

 【答案】C

【解析】由正弦定理,得代入得到,

由余弦定理的推理得,所以C为钝角,所以该三角形为钝角三角形.故选择A.

【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.

17.设,,随机变量取值的概率均为,随机变量取值的概率也均为,若记分别为的方差,则(    )

A.           B.  

 C.           D.与的大小关系与的取值有关

【答案】 A

【解析】 由随机变量的取值情况,它们的平均数分别为:,  

且随机变量的概率都为,所以有>. 故选择A.

【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题.

18.设,,在中,正数的个数是(    )

A.25                B.50               C.75               D.100

【答案】C

【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.

【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力.

三、解答题(本大题共有5题,满分74分)

19.如图,在四棱锥P-ABCD中,底面ABCD是矩形,

PA⊥底面ABCD,E是PC的中点.已知AB=2,

AD=2,PA=2.求:

(1)三角形PCD的面积;(6分)

(2)异面直线BC与AE所成的角的大小.(6分)

[解](1)因为PA⊥底面ABCD,所以PA⊥CD,又AD⊥CD,所以CD⊥平面PAD,

         从而CD⊥PD.                                            ……3分

         因为PD=,CD=2,

         所以三角形PCD的面积为.                ……6分

    (2)[解法一]如图所示,建立空间直角坐标系,

         则B(2, 0, 0),C(2, 2,0),E(1, , 1),

         ,.    ……8分

         设与的夹角为,则

          ,=.

          由此可知,异面直线BC与AE所成的角的大小是          ……12分

          [解法二]取PB中点F,连接EF、AF,则

          EF∥BC,从而∠AEF(或其补角)是异面直线

          BC与AE所成的角       ……8分

          在中,由EF=、AF=、AE=2

          知是等腰直角三角形,

          所以∠AEF=. 

因此异面直线BC与AE所成的角的大小是                ……12分

【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题.

20.已知函数.

    (1)若,求的取值范围;(6分)

    (2)若是以2为周期的偶函数,且当时,有,求函数

的反函数.(8分)

[解](1)由,得.

         由得.       ……3分

         因为,所以,.

         由得.                               ……6分

    (2)当x[1,2]时,2-x[0,1],因此

.        ……10分

由单调性可得.

因为,所以所求反函数是,. ……14分

【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题.

21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴

正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海

里A处,如图. 现假设:①失事船的移动路径可视为抛物线

;②定位后救援船即刻沿直线匀速前往救援;③救

援船出发小时后,失事船所在位置的横坐标为.

    (1)当时,写出失事船所在位置P的纵坐标. 若此时

两船恰好会合,求救援船速度的大小和方向;(6分)

    (2)问救援船的时速至少是多少海里才能追上失事船?(8分)

[解](1)时,P的横坐标xP=,代入抛物线方程

         中,得P的纵坐标yP=3.                                    ……2分

         由|AP|=,得救援船速度的大小为海里/时.           ……4分

         由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向

         为北偏东arctan弧度.                                    ……6分

    (2)设救援船的时速为海里,经过小时追上失事船,此时位置为.

         由,整理得.……10分

         因为,当且仅当=1时等号成立,

         所以,即.

         因此,救援船的时速至少是25海里才能追上失事船.         ……14分

22.在平面直角坐标系中,已知双曲线.

    (1)过的左顶点引的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成

的三角形的面积;(4分)

    (2)设斜率为1的直线l交于P、Q两点,若l与圆相切,求证:

OP⊥OQ;(6分)

    (3)设椭圆. 若M、N分别是、上的动点,且OM⊥ON,

求证:O到直线MN的距离是定值.(6分)

[解](1)双曲线,左顶点,渐近线方程:.

         过点A与渐近线平行的直线方程为,即.

         解方程组,得.                      ……2分

         所以所求三角形的面积1为.              ……4分

    (2)设直线PQ的方程是.因直线与已知圆相切,

         故,即.                                      ……6分

         由,得.

         设P(x1, y1)、Q(x2, y2),则.

         又2,所以

         

故OP⊥OQ.                                             ……10分

    (3)当直线ON垂直于x轴时,

         |ON|=1,|OM|=,则O到直线MN的距离为.

         当直线ON不垂直于x轴时,

         设直线ON的方程为(显然),则直线OM的方程为.

         由,得,所以.

同理.                                       ……13分

         设O到直线MN的距离为d,因为,

         所以,即d=.

         综上,O到直线MN的距离是定值.                         ……16分

【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为,它的渐近线为,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 .

23.对于数集,其中,,定义向量集

. 若对于任意,存在,使得,则称X

具有性质P. 例如具有性质P.

    (1)若x>2,且,求x的值;(4分)

    (2)若X具有性质P,求证:1X,且当xn>1时,x1=1;(6分)

    (3)若X具有性质P,且x1=1,x2=q(q为常数),求有穷数列的通

项公式.(8分)

[解](1)选取,Y中与垂直的元素必有形式.        ……2分

         所以x=2b,从而x=4.                                       ……4分

    (2)证明:取.设满足.

         由得,所以、异号.

         因为-1是X中唯一的负数,所以、中之一为-1,另一为1,

故1X.                                                  ……7分

假设,其中,则.

选取,并设满足,即,

则、异号,从而、之中恰有一个为-1.

若=-1,则2,矛盾;

若=-1,则,矛盾.

所以x1=1.                                                ……10分

    (3)[解法一]猜测,i=1, 2, …, n.                        ……12分

         记,k=2, 3, …, n.

         先证明:若具有性质P,则也具有性质P.

         任取,、.当、中出现-1时,显然有满足;

         当且时,、≥1.

         因为具有性质P,所以有,、,使得,

从而和中有一个是-1,不妨设=-1.

假设且,则.由,得,与

矛盾.所以.从而也具有性质P.               ……15分

现用数学归纳法证明:,i=1, 2, …, n.

当n=2时,结论显然成立;

         假设n=k时,有性质P,则,i=1, 2, …, k;

         当n=k+1时,若有性质P,则

         也有性质P,所以.

         取,并设满足,即.由此可得s与t中有且只有一个为-1.

         若,则1,不可能;

         所以,,又,所以.

         综上所述,,i=1, 2, …, n.                  ……18分

         [解法二]设,,则等价于.

         记,则数集X具有性质P当且仅当数集B关于

原点对称.                                               ……14分

注意到-1是X中的唯一负数,共有n-1个数,

所以也只有n-1个数.

由于,已有n-1个数,对以下三角数阵

                     

                      

                      ……

                      

         注意到,所以,从而数列的通项公式为

         ,k=1, 2, …, n.                        ……18分

【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“具有性质”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.

文档

2012上海高考数学试题(理科)答案与解析

2012上海高考数学试题(理科)答案与解析一.填空题1.计算:(为虚数单位).【答案】【解析】.【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合,,则.【答案】【解析】根据集合A,解得,由,所以.【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决.3.函数的值域是.【答案】【解析】根据题目,因为,所以.【点评】本题主要考查行列式的基本运
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top