最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2020-2021全国中考数学平行四边形的综合中考真题汇总含答案

来源:动视网 责编:小OO 时间:2025-09-24 12:16:24
文档

2020-2021全国中考数学平行四边形的综合中考真题汇总含答案

2020-2021全国中考数学平行四边形的综合中考真题汇总含答案一、平行四边形1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.例如:张老师给小聪提出这样一个问题:如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?小聪的计算思路是:根据题意得:S△ABC=12BC•AD=12AB•CE.从而得2AD=CE,∴12ADCE请运用上述材料中所积累的经验和方法解决下列问题:(1)(类比探究)如图2,在▱ABCD中,点E
推荐度:
导读2020-2021全国中考数学平行四边形的综合中考真题汇总含答案一、平行四边形1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.例如:张老师给小聪提出这样一个问题:如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?小聪的计算思路是:根据题意得:S△ABC=12BC•AD=12AB•CE.从而得2AD=CE,∴12ADCE请运用上述材料中所积累的经验和方法解决下列问题:(1)(类比探究)如图2,在▱ABCD中,点E
2020-2021全国中考数学平行四边形的综合中考真题汇总含答案

一、平行四边形

1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.

例如:张老师给小聪提出这样一个问题:

如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?

小聪的计算思路是:

根据题意得:S△ABC=1

2

BC•AD=

1

2

AB•CE.

从而得2AD=CE,∴

1

2 AD CE

请运用上述材料中所积累的经验和方法解决下列问题:

(1)(类比探究)

如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,

求证:BO平分角AOC.

(2)(探究延伸)

如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.

(3)(迁移应用)

如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,

AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求

△DEM与△CEN的周长之和.

【答案】(1)见解析;(2)见解析;(3)34

【解析】

分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出

∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出

AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和.

同理:EM+EN=AB

详解:证明:(1)如图2,∵四边形ABCD是平行四边形,

∴S△ABF=S▱ABCD,S△BCE=S▱ABCD,∴S△ABF=S△BCE,

过点B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH,

∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH,

在Rt△BOG和Rt△BOH中,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH,

∴OB平分∠AOC,

(2)如图3,过点P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC,

∴∠CFP=∠BGP=90°,∵点P是CD中点,

在△CPF和△DPG中,∴△CPF≌△DPG,∴PF=PG=FG=2,

延长BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP,

在△CPE和△DPB中,∴△CPE≌△DPB,∴PE=PB,

∵∠APB=90°,∴AE=AB,∴S△APE=S△APB,

∵S△APE=AE×PF=AE=AB,S△APB=AP×PB,

∴AB=AP×PB,即:PA•PB=2AB;

(3)如图4,延长AD,BC交于点G,∵∠BAD=∠B,

∴AG=BG,过点A作AF⊥BC于F,

设CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=,

根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=,

根据勾股定理得,AF2=AC2﹣CF2=26﹣x2,

∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5,

连接EG,∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE),∴DE+CE=AF=5,在Rt△ADE中,点M是AE的中点,∴AE=2DM=2EM,

同理:BE=2CN=2EN,∵AB=AE+BE,∴2DM+2CN=AB,∴DM+CN=AB,

同理:EM+EN=AB ∴△DEM与△CEN的周长之和=DE+DM+EM+CE+CN+EN=(DE+CE)

+[(DM+CN)+(EM+EN)]

=(DE+CN)+AB=5+.

点睛:本题主要考查的就是三角形全等的判定与性质以及三角形的等积法,综合性非常强,难度较大.在解决这个问题的关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间的关系.

2.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且

AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;

(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;

(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.

【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)

∠BHO=45°.

【解析】

试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,

∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断

AG⊥BE;(2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立;

(3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,

ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO 平分∠BHG,即∠BHO=45°.

试题解析:(1)①∵四边形ABCD为正方形,

∴DA=DC,∠ADB=∠CDB=45°,

在△ADG和△CDG中

∴△ADG≌△CDG(SAS),

∴∠DAG=∠DCG;

②AG⊥BE.理由如下:

∵四边形ABCD为正方形,

∴AB=DC,∠BAD=∠CDA=90°,

在△ABE和△DCF中

∴△ABE≌△DCF(SAS),

∴∠ABE=∠DCF,

∵∠DAG=∠DCG,

∴∠DAG=∠ABE,

∵∠DAG+∠BAG=90°,

∴∠ABE+∠BAG=90°,

∴∠AHB=90°,

∴AG⊥BE;

(2)由(1)可知AG⊥BE.

如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.

∴∠MON=90°,

又∵OA⊥OB,

∴∠AON=∠BOM.

∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.

在△AON与△BOM中,

∴△AON≌△BOM(AAS).

∴OM=ON,

∴矩形OMHN为正方形,

∴HO平分∠BHG.

(3)将图形补充完整,如答图2示,∠BHO=45°.

与(1)同理,可以证明AG⊥BE.

过点O作OM⊥BE于点M,ON⊥AG于点N,

与(2)同理,可以证明△AON≌△BOM,

可得OMHN为正方形,所以HO平分∠BHG,

∴∠BHO=45°.

考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质

3.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.

(1)求证:∠APB=∠BPH;

(2)当点P在边AD上移动时,求证:△PDH的周长是定值;

(3)当BE+CF的长取最小值时,求AP的长.

【答案】(1)证明见解析.(2)证明见解析.(3)2.

【解析】

试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH ,进而利用平行线的性质得出∠APB=∠PBC 即可得出答案;

(2)首先证明△ABP ≌△QBP ,进而得出△BCH ≌△BQH ,即可得出

PD+DH+PH=AP+PD+DH+HC=AD+CD=8;

(3)过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB ,证明△EFM ≌△BPA ,设AP=x ,利用折叠的性质和勾股定理的知识用x 表示出BE 和CF ,结合二次函数的性质求出最值. 试题解析:(1)解:如图1,

∵PE=BE ,

∴∠EBP=∠EPB .

又∵∠EPH=∠EBC=90°,

∴∠EPH-∠EPB=∠EBC-∠EBP .

即∠PBC=∠BPH .

又∵AD ∥BC ,

∴∠APB=∠PBC .

∴∠APB=∠BPH .

(2)证明:如图2,过B 作BQ ⊥PH ,垂足为Q .

由(1)知∠APB=∠BPH ,

又∵∠A=∠BQP=90°,BP=BP ,

在△ABP 和△QBP 中,

{90APB BPH

A BQP BP BP

∠=∠∠=∠=︒=,

∴△ABP ≌△QBP (AAS ),

∴AP=QP ,AB=BQ ,

又∵AB=BC ,

∴BC=BQ .

又∠C=∠BQH=90°,BH=BH ,

在△BCH 和△BQH 中,

{90BC BQ

C BQH BH BH

=∠=∠=︒=,

∴△BCH ≌△BQH (SAS ),

∴CH=QH .

∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.

∴△PDH 的周长是定值.

(3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB .

又∵EF 为折痕,

∴EF ⊥BP .

∴∠EFM+∠MEF=∠ABP+∠BEF=90°,

∴∠EFM=∠ABP .

又∵∠A=∠EMF=90°,

在△EFM 和△BPA 中,

{EFM ABP

EMF A FM AB

∠=∠∠=∠=,

∴△EFM ≌△BPA (AAS ).

∴EM=AP .

设AP=x

在Rt △APE 中,(4-BE )2+x 2=BE 2.

解得BE=2+2

8

x , ∴CF=BE-EM=2+28

x -x , ∴BE+CF=24

x -x+4=14(x-2)2+3. 当x=2时,BE+CF 取最小值,

∴AP=2.

4.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.

(1)求证:△AED≌△CEB′

(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.

【答案】(1)证明见解析;(2).

【解析】

【分析】

(1)由折叠的性质知,,则由得到;

(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.

【详解】

(1)四边形为矩形,

又,

(2),

在中,

过点作于,

、、共线,

,四边形是矩形,

.

【点睛】

此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.

5.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.

(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;

(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;

(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.

【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.

【解析】

试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知

△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出

CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出

EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;

(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到

△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.

试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,

∴AF=AG,∠FAG=90°,

∵∠EAF=45°,

∴∠GAE=45°,

在△AGE与△AFE中,

∴△AGE≌△AFE(SAS);

(2)设正方形ABCD的边长为a.

将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.

则△ADF≌△ABG,DF=BG.

由(1)知△AEG≌△AEF,

∴EG=EF.

∵∠CEF=45°,

∴△BME、△DNF、△CEF均为等腰直角三角形,

∴CE=CF,BE=BM,NF=DF,

∴a﹣BE=a﹣DF,

∴BE=DF,

∴BE=BM=DF=BG,

∴∠BMG=45°,

∴∠GME=45°+45°=90°,

∴EG2=ME2+MG2,

∵EG=EF,MG=BM=DF=NF,

∴EF2=ME2+NF2;

(3)EF2=2BE2+2DF2.

如图所示,延长EF交AB延长线于M点,交AD延长线于N点,

将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.

由(1)知△AEH≌△AEF,

则由勾股定理有(GH+BE)2+BG2=EH2,

即(GH+BE)2+(BM﹣GM)2=EH2

又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2

考点:四边形综合题

6.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E 是线段AB的中点,连接CE并延长交线段AD于点F.

(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.

【答案】(1)见解析;(2)S平行四边形ADBC

273

【解析】

【分析】

(1)在Rt△ABC中,E为AB的中点,则CE=1

2

AB,BE=

1

2

AB,得到∠BCE=∠EBC=60°.由

△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE

=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.

(2)在Rt△ABC中,求出BC,AC即可解决问题;

【详解】

解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,

∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=1

2AB,BE=

1

2

AB,

∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,

∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又

∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S平行四边形

BCFD =3×33=93,S △ACF =12×3×33=932,S 平行四边形ADBC =2732

. 【点睛】

本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.

7.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .

(1)求证:DE DF ⊥;

(2)求证:DH DF =:

(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.

【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.

【解析】

【分析】

(1)根据正方形性质, CF AE =得到DE DF ⊥.

(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠,

得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于

45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.

(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得

222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,得

HM HN =.因为4590HBN HNB ∠=︒∠=︒,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒

,得22EF AB HM =-. 【详解】

(1)证明:∵四边形ABCD 是正方形,

∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.

∴90EAD FCD ∠=∠=︒.

∵CF AE =。

∴AED CFD △△≌.

∴ADE CDF ∠=∠.

∴90EDF EDC CDF EDC ADE ADC ∠=∠+∠=∠+∠=∠=︒.

∴DE DF ⊥.

(2)证明:∵AED CFD △△≌,

∴DE DF =.

∵90EDF ∠=︒,

∴45DEF DFE ∠=∠=︒.

∵90ABC ∠=︒,BD 平分ABC ∠,

∴45DBF ∠=︒.

∵FH 平分EFB ∠,

∴EFH BFH ∠=∠.

∵45DHF DBF BFH BFH ∠=∠+∠=︒+∠,

45DFH DFE EFH EFH ∠=∠+∠=︒+∠,

∴DHF DFH ∠=∠.

∴DH DF =.

(3)22EF AB HM =-.

证明:过点H 作HN BC ⊥于点N ,如图,

∵正方形ABCD 中,AB AD =,90BAD ∠=︒,

∴222BD AB AD AB =+=.

∵FH 平分,EFB HM EF HN BC ∠⊥⊥,

∴HM HN =.

∵4590HBN HNB ∠=︒∠=︒,

, ∴22sin 45HN BH HN HM ===︒

. ∴22DH BD BH AB HM =-=

-. ∵22cos 45DF EF DF DH ===︒

, ∴22EF AB HM =-.

【点睛】

本题考查正方形的性质、勾股定理、角平分线的性质、三角函数,题目难度较大,解题的关键是熟练掌握正方形的性质、勾股定理、角平分线的性质、三角函数.

8.(1)(问题发现)

如图1,在Rt △ABC 中,AB =AC =2,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为

(2)(拓展研究)

在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明;

(3)(问题发现)

当正方形CDEF 旋转到B ,E ,F 三点共线时候,直接写出线段AF 的长.

【答案】(1)2AF ;(2)无变化;(3)AF 313.

【解析】

试题分析:(1)先利用等腰直角三角形的性质得出2 ,再得出BE=AB=2,即可得出结论;

(2)先利用三角函数得出2CA CB =,同理得出2CF CE =△ACF ∽△BCE ,进而得出结论;

(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出

2,6,即可得出62,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论.

试题解析:(1)在Rt △ABC 中,AB=AC=2,

根据勾股定理得,22,

点D 为BC 的中点,∴AD=12, ∵四边形CDEF 是正方形,∴

∵BE=AB=2,∴

AF ,

故答案为AF ;

(2)无变化;

如图2,在Rt △ABC 中,AB=AC=2,

∴∠ABC=∠ACB=45°,∴sin ∠ABC=

2CA CB =, 在正方形CDEF 中,∠FEC=

12∠FED=45°,

在Rt △CEF 中,sin ∠FEC=

2CF CE =, ∴CF CA CE CB

=, ∵∠FCE=∠ACB=45°,∴∠FCE ﹣∠ACE=∠ACB ﹣∠ACE ,∴∠FCA=∠ECB ,

∴△ACF ∽△BCE ,∴

BE CB

AF CA

=∴AF , ∴线段BE 与AF 的数量关系无变化;

(3)当点E 在线段AF 上时,如图2,

由(1)知,

在Rt △BCF 中,,

根据勾股定理得,∴BE=BF ﹣,

由(2)知,∴﹣1,

当点E 在线段BF 的延长线上时,如图3,

在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=

2CA CB =, 在正方形CDEF 中,∠FEC=

12∠FED=45°,

在Rt △CEF 中,sin ∠FEC=2

CF CE = ,∴CF CA CE CB = , ∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE ,∴∠FCA=∠ECB ,

∴△ACF ∽△BCE ,∴BE CB

AF CA

=∴AF ,

由(1)知,

在Rt △BCF 中,,

根据勾股定理得,∴

即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为3﹣1或3+1.

9.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.

(1)求AE、EF的位置关系;

(2)求线段B′C的长,并求△B′EC的面积.

【答案】(1)见解析;(2)S△B′EC=108 25

【解析】

【分析】

(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;

(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,

∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.

【详解】

(1)由折线法及点E是BC的中点,

∴EB=EB′=EC,∠AEB=∠AEB′,

∴△B'EC是等腰三角形,

又∵EF⊥B′C

∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,

∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,

(2)连接BB '交AE 于点O ,由折线法及点E 是BC 的中点,

∴EB =EB ′=EC ,

∴∠EBB ′=∠EB ′B ,∠ECB ′=∠EB ′C ;

又∵△BB 'C 三内角之和为180°,

∴∠BB 'C =90°;

∵点B ′是点B 关于直线AE 的对称点,

∴AE 垂直平分BB ′;

在Rt △AOB 和Rt △BOE 中,BO 2=AB 2﹣AO 2=BE 2﹣(AE ﹣AO )2

将AB =4cm ,BE =3cm ,AE =5cm ,

∴AO =165 cm , ∴BO =22AB AO -=

125cm , ∴BB ′=2BO =

245cm , ∴在Rt △BB 'C 中,B ′C =22BC BB '-=

518cm , 由题意可知四边形OEFB ′是矩形, ∴EF =OB ′=

125, ∴S △B ′EC =*111812108225525

B C EF '

⨯=⨯⨯=.

【点睛】

考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.

10.如图1,矩形ABCD 中,AB=8,AD=6;点E 是对角线BD 上一动点,连接CE ,作EF ⊥CE 交AB 边于点F ,以CE 和EF 为邻边作矩形CEFG ,作其对角线相交于点H . (1)①如图2,当点F 与点B 重合时,CE= ,CG= ;

②如图3,当点E 是BD 中点时,CE= ,CG= ;

(2)在图1,连接BG ,当矩形CEFG 随着点E 的运动而变化时,猜想△EBG 的形状?并

(3)在图1,CG CE 的值是否会发生改变?若不变,求出它的值;若改变,说明理由; (4)在图1,设DE 的长为x ,矩形CEFG 的面积为S ,试求S 关于x 的函数关系式,并直接写出x 的取值范围.

【答案】(1)245,185

,5,154 ;(2)△EBG 是直角三角形,理由详见解析;(3)34 ;(4)S=34

x 2﹣485x+48(0≤x≤325). 【解析】

【分析】

(1)①利用面积法求出CE ,再利用勾股定理求出EF 即可;②利用直角三角形斜边中线定理求出CE ,再利用相似三角形的性质求出EF 即可;

(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;

(3)只要证明△DCE ∽△BCG ,即可解决问题;

(4)利用相似多边形的性质构建函数关系式即可;

【详解】

(1)①如图2中,

在Rt △BAD 中,22AD AB +, ∵S △BCD =

12•CD•BC=12•BD•CE , ∴CE=245.2224186()55

-. ②如图3中,过点E 作MN ⊥AM 交AB 于N ,交CD 于M .

∵DE=BE ,

∴CE=12BD=5, ∵△CME ∽△ENF ,

∴CM EN CE EF

=, ∴CG=EF=

154, (2)结论:△EBG 是直角三角形.

理由:如图1中,连接BH .

在Rt △BCF 中,∵FH=CH ,

∴BH=FH=CH ,

∵四边形EFGC 是矩形,

∴EH=HG=HF=HC ,

∴BH=EH=HG ,

∴△EBG 是直角三角形.

(3)F 如图1中,∵HE=HC=HG=HB=HF ,

∴C 、E 、F 、B 、G 五点共圆,

∵EF=CG ,

∴∠CBG=∠EBF , ∵CD ∥AB ,

∴∠EBF=∠CDE ,

∴∠CBG=∠CDE ,

∵∠DCB=∠ECG=90°,

∴∠DCE=∠BCG ,

∴△DCE ∽△BCG ,

∴6384

CG BC CE DC ===.

(4)由(3)可知: 34CG CD CE CB ==, ∴矩形

CEFG

∽矩形

ABCD , ∴2

2

CEFG ABCD S CE CE S CD ==矩形矩形(), ∵CE 2=(325-x )2+245

)2,S 矩形ABCD =48, ∴S 矩形CEFG =

34

[(325-x )2+(245)2]. ∴矩形CEFG 的面积S=34

x 2-485x+48(0≤x≤325). 【点睛】 本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、直角三角形的判定和性质、相似多边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或直角三角形解决问题,属于中考压轴题.

11.如图1所示,(1)在正三角形ABC 中,M 是BC 边(不含端点B 、C )上任意一点,P 是BC 延长线上一点,N 是∠ACP 的平分线上一点,若∠AMN=60°,求证:AM=MN . (2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N 是∠DCP 的平分线上一点,若∠AMN=90°,则AM=MN 是否成立?若成立,请证明;若不成立,说明理由.

(3)若将(2)中的“正方形ABCD”改为“正n 边形A 1A 2…A n “,其它条件不变,请你猜想:当∠A n ﹣2MN=_____°时,结论A n ﹣2M=MN 仍然成立.(不要求证明)

【答案】0

(2)180n n

- 【解析】

分析:(1)要证明AM=MN ,可证AM 与MN 所在的三角形全等,为此,可在AB 上取一点E ,使AE=CM ,连接ME ,利用ASA 即可证明△AEM ≌△MCN ,然后根据全等三角形的对应边成比例得出AM=MN .

(2)同(1),要证明AM=MN ,可证AM 与MN 所在的三角形全等,为此,可在AB 上取一点E ,使AE=CM ,连接ME ,利用ASA 即可证明△AEM ≌△MCN ,然后根据全等三角形的对应边成比例得出AM=MN .

在正△ABC中,∠B=∠BCA=60°,AB=BC.

∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAE,

BE=AB-AE=BC-MC=BM,

∴∠BEM=60°,∴∠AEM=120°.

∵N是∠ACP的平分线上一点,

∴∠ACN=60°,∴∠MCN=120°.

在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,

∴△AEM≌△MCN(ASA),

∴AM=MN.

(2)解:结论成立;

理由:在边AB上截取AE=MC,连接ME.

∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.

∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,

BE=AB-AE=BC-MC=BM,

∴∠BEM=45°,∴∠AEM=135°.

∵N是∠DCP的平分线上一点,

∴∠NCP=45°,∴∠MCN=135°.

在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,

∴△AEM≌△MCN(ASA),

∴AM=MN.

(3)由(1)(2)可知当∠A n-2MN等于n边形的内角时,结论A n-2M=MN仍然成立;

即∠A n-2MN=()0

2180

n

n

-

时,结论A n-2M=MN仍然成立;

故答案为[()0

2180

n

n

-

].

点睛:本题综合考查了正方形、等边三角形的性质及全等三角形的判定,同时考查了学生的归纳能力及分析、解决问题的能力.难度较大.

12.已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.

(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;

(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.

【答案】(1)10;(2)12-a;(3)不能

【解析】

解:(1)过点G作GM⊥BC于M.在正方形EFGH中,

∠HEF=90°,EH=EF,

∴∠AEH+∠BEF=90°.

∵∠AEH+∠AHE=90°,

∴∠AHE=∠BEF.

又∵∠A=∠B=90°,

∴△AHE≌△BEF.

同理可证△MFG≌△BEF.

∴GM=BF=AE=2.∴FC=BC-BF=10.

∴.

(2)过点G作GM⊥BC交BC的延长线于M,连接HF.

∵AD∥BC,∴∠AHF=∠MFH.

∵EH∥FG,∴∠EHF=∠GFH.

∴∠AHE=∠MFG.

又∵∠A=∠GMF=90°,EH=GF,

∴△AHE≌△MFG.∴GM=AE=2.

∴.

(3)△GFC的面积不能等于2.

说明一:∵若S△GFC=2,则12-a=2,∴a=10.

此时,在△BEF中,

在△AHE中,

,∴AH>AD,即点H已经不在边AD上,故不可能有S△GFC=2.

说明二:△GFC的面积不能等于2.∵点H在AD上,

∴菱形边EH的最大值为,∴BF的最大值为.

又∵函数S△GFC=12-a的值随着a的增大而减小,

∴S△GFC的最小值为.

又∵,∴△GFC的面积不能等于2.

13.数学活动课上,老师给出如下问题:如图,将等腰直角三角形纸片沿斜边上的高AC

剪开,得到等腰直角三角形△ABC与△EFD,将△EFD的直角顶点在直线BC上平移,在平移的过程中,直线AC与直线DE交于点Q,让同学们探究线段BQ与AD的数量关系和位置关系.

请你阅读下面交流信息,解决所提出的问题.

展示交流:

小敏:满足条件的图形如图甲所示图形,延长BQ与AD交于点H.我们可以证明

△BCQ≌△ACD,从而易得BQ=AD,BQ⊥AD.

小慧:根据图甲,当点F在线段BC上时,我们可以验证小慧的说法是正确的.但当点F在线段CB的延长线上(如图乙)或线段CB的反向延长线上(如图丙)时,我对小慧说法的正确性表示怀疑.

(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由.

(选择图乙或图丙的一种情况说明即可).

(2)小慧思考问题的方式中,蕴含的数学思想是.

拓展延伸:

根据你上面选择的图形,分别取AB、BD、DQ、AQ的中点M、N、P、T.则四边形MNPT 是什么样的特殊四边形?请说明理由.

【答案】成立;分类讨论思想;正方形.

【解析】

试题分析:利用等腰直角三角形的性质结合全等三角形的判定与性质得出BQ=AD,

BQ⊥AD;利用已知条件分类得出,体现数学中的分类讨论思想,拓展延伸:利用三角形中位线定理结合正方形的判定方法,首先得出四边形MNPT是平行四边形进而得出它是菱形,再求出一个内角是90°,即可得出答案.

试题解析:(1)、成立,

理由:如图乙:由题意可得:∠FDE=∠QDC=∠ABC=∠BAC=45°,则DC=QC,AC=BC,

在△ADC和△BQC中∵,∴△ADC≌△BQC(SAS),∴AD=BQ,

∠DAC=∠QBC,

延长AD交BQ于点F,则∠ADC=∠BDF,∴∠BFD=∠ACD=90°,∴AD⊥BQ;

(2)、小慧思考问题的方式中,蕴含的数学思想是:分类讨论思想;

拓展延伸:四边形MNPT是正方形,

理由:∵取AB、BD、DQ、AQ的中点M、N、P、T,∴MN AD,TP AD,

∴MN TP,

∴四边形MNPT是平行四边形,∵NP BQ,BQ=AD,∴NP=MN,∴平行四边形MNPT 是菱形,

又∵AD⊥BQ,NP∥BQ,MN∥AD,∴∠MNP=90°,∴四边形MNPT是正方形.

考点:几何变换综合题

14.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.

(1)求证:∠APB=∠BPH;

(2)当点P在边AD上移动时,求证:△PDH的周长是定值;

(3)当BE+CF的长取最小值时,求AP的长.

【答案】(1)证明见解析.(2)证明见解析.(3)2.

【解析】

试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;

(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出

PD+DH+PH=AP+PD+DH+HC=AD+CD=8;

(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.

试题解析:(1)解:如图1,

∵PE=BE,

∴∠EBP=∠EPB.

又∵∠EPH=∠EBC=90°,

∴∠EPH-∠EPB=∠EBC-∠EBP.

即∠PBC=∠BPH.

又∵AD∥BC,

∴∠APB=∠PBC.

∴∠APB=∠BPH.

(2)证明:如图2,过B作BQ⊥PH,垂足为Q.

由(1)知∠APB=∠BPH,

又∵∠A=∠BQP=90°,BP=BP,

在△ABP和△QBP中,

∴△ABP≌△QBP(AAS),

∴AP=QP,AB=BQ,

又∵AB=BC,∴BC=BQ.

又∠C=∠BQH=90°,BH=BH,

在△BCH和△BQH中,

∴△BCH≌△BQH(SAS),

∴CH=QH.

∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.

∴△PDH的周长是定值.

(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.

又∵EF为折痕,

∴EF⊥BP.

∴∠EFM+∠MEF=∠ABP+∠BEF=90°,

∴∠EFM=∠ABP.

又∵∠A=∠EMF=90°,

在△EFM和△BPA中,

∴△EFM≌△BPA(AAS).

∴EM=AP.

设AP=x

在Rt△APE中,(4-BE)2+x2=BE2.

解得BE=2+,

∴CF=BE-EM=2+-x,

∴BE+CF=-x+4=(x-2)2+3.

当x=2时,BE+CF取最小值,

∴AP=2.

考点:几何变换综合题.15.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO 绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.

(1)求证:△AOG≌△ADG;

(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;

(3)当∠1=∠2时,求直线PE的解析式;

(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.

【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.

【解析】

试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出

△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据

∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据

∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而

∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.

(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.

试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.

(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;

∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,

∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,

∠1=∠2,∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,

又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,

∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,

∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣

1),

∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则

解得:,∴直线PE的解析式为y=x﹣3.

(4)①如图1,当点M在x轴的负半轴上时,∵AG=MG,点A坐标为(0,3),

∴点M坐标为(0,﹣3).

②如图2,当点M在EP的延长线上时,由(3),可得∠AGO=∠PGC=60°,

∴EP与AB的交点M,满足AG=MG,∵A点的横坐标是0,G点横坐标为,

∴M的横坐标是2,纵坐标是3,∴点M坐标为(2,3).

综上,可得点M坐标为(0,﹣3)或(2,3).

考点:几何变换综合题.

文档

2020-2021全国中考数学平行四边形的综合中考真题汇总含答案

2020-2021全国中考数学平行四边形的综合中考真题汇总含答案一、平行四边形1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.例如:张老师给小聪提出这样一个问题:如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?小聪的计算思路是:根据题意得:S△ABC=12BC•AD=12AB•CE.从而得2AD=CE,∴12ADCE请运用上述材料中所积累的经验和方法解决下列问题:(1)(类比探究)如图2,在▱ABCD中,点E
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top