
卷
一、选择题(每小题4分,共48分)
1.(4分)在实数中,无理数的个数为()A.1个B.2个C.3个D.4个
2.(4分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.B.2,3,4C.D.
3.(4分)在平面直角坐标系中,点P(2,﹣3)在()
A.第一象限B.第二象限C.第三象限D.第四象限
4.(4分)估算的值()
A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间5.(4分)函数中,自变量x的取值范围是()
A.x>4B.x≥﹣2且x≠4C.x>﹣2且x≠4D.x≠4
6.(4分)若a>b,则下列各式正确的是()
A.a+c2>b+c2B.﹣2a>﹣2b C.D.a﹣1>b
7.(4分)若一次函数y=(k﹣1)x+1﹣k2经过原点,则k的值是()A.1B.±1C.﹣1D.任意实数
8.(4分)一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在图象上,则()
A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2
9.(4分)将直线y=kx﹣2向下平移6个单位后,正好经过点(2,4),则k的值为()A.3B.4C.5D.6
10.(4分)如图,一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0,n>0)的图象是()A.B.
C.D.
11.(4分)不等式组的解集是x>2,则m的取值范围是()A.m≤2B.m≥2C.m≤1D.m≥1
12.(4分)如图,在平面直角坐标系上有个点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2019次跳动至点A2019的坐标是()
A.(﹣505,1009)B.(505,1010)
C.(﹣504,1009)D.(504,1010)
二、填空题(每小题4分,共32分)
13.(4分)的平方根是.
14.(4分)比较大小:.(填“>、<、或=”)
15.(4分)已知直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式kx+b>﹣2的解集为.16.(4分)若与的小数部分分别为a与b,则a+b=.
17.(4分)如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点C′处,若AB=5,BC=3,则点C的坐标为.
18.(4分)如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为.
19.(4分)“龟、蟹赛跑趣事”:某天,乌龟和螃蟹在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑500米,当螃蟹领先乌龟300米时,螃蟹停下来休息并睡着了,当乌龟追上螃蟹的瞬间,螃蟹惊醒了(惊醒时间忽略不计)立即以原来的速度继续跑向终点,并赢得了比赛.在比赛的整个过程中,乌龟和螃蟹的距离y(米)与乌龟出发的时间x(分钟)之间的关系如图所示,则螃蟹到达终点时,乌龟距终点的距离是米.
20.(4分)某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为元.
三、解答题(本大题8个小题,共70分)解答时每小题必须给出必要的演算过程或推理步骤.画出必要的图形,请将解答过程书写在答题卡中对应的位置上.
21.(10分)计算:
(1)
(2)
22.(10分)解下列不等式(组)
(1)2﹣5x≥8﹣2x
(2)
23.(8分)先化简再求值,(﹣2a﹣b)(2a﹣b)+(a﹣2b)2﹣2a(3b﹣4a),其中
.
24.(8分)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD 与x轴、y轴分别交于点C,D,AB的解析式为y x+16,CD的解析式为y=kx+b且AO=2CO,两直线的交点E(3,m).(1)求直线CD的解析式;
(2)求四边形DEAO的面积;
(3)当x+16>kx+b时,直接写出x的取值范围.
25.(6分)定义直线y=kx+b(kb≠0)与直线y=bx+k(kb≠0)互为“对称直线”,例如,直线y=x+2与直线y=2x+1互为“对称直线”;直线y=kx+b中,k称为斜率,若A(x1,y1),B(x2,y2)为直线y=kx+b上任意两点(x1≠x2),则斜率.若点A(﹣3,1)、B(2,4)在直线y=ax+c上.
(1)a=;
(2)直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,求△P AB的周长.26.(8分)开学初,为丰富教师们的业余生活,我校组织所有教师前往重庆大剧院观看演出.重庆大剧院的演出门票价格方案如下:1.票价根据座位区域不同定价不同,一区票价为120元/张,二区票价为100元/张;2.离退休教师各区均享受八折优惠.已知本次活动实到教师700人,若本次活动每人均购买二区票则需67200元.
(1)求参加本次活动的在职教师、离退休教师分别有多少人;
(2)为庆祝重阳节,重庆在大剧院调整了票价方案,将200张一区演出票票价每张降低了2a元,将全部二区演出票票价每张降低了a元,离退休教师可在降价后仍享受八折优惠.若学校决定将200张一区演出票全部购入并优先发放给离退休教师和部分在职教师,其余教师均购买二区票,且校方希望总门票费用不超过620元,求a的最小值.27.(10分)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,在△ABE中,∠AEB=90°,AE与BC交于点F.
(1)若∠BAE=30°,BF=2,求BE的长;
(2)如图2,D为BE延长线上一点,连接AD、FD、CD,若AB=AD,∠ACD=135°,求证:BD+BF=AF.
28.(10分)如图,在平面直角坐标系中,已知直线BD:y x﹣2与直线CE:y x+4相交于点A.
(1)求点A的坐标;
(2)点P是△ABC内部一点,连接P A、PB、PC,求PB+P A+PC的最小值;
(3)将点D向下平移一个单位得到点D1,连接BD1,将△OD1B绕点O旋转至△OB1D2的位置,使B1D2∥x轴,再将△OB1D2沿y轴向下平移得到△O1B2D3,在平移过程中,直线O1D3与x轴交于点K,在直线x=3上任取一点T,连接KT,O1T,△O1KT能否以O1K为直角边构成等腰直角三角形?若能,请直接写出所有符合条件的T点的坐标;
若不能,请说明理由.
