最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

5.浙江省首届高等数学竞赛试题(2002.12.7)

来源:动视网 责编:小OO 时间:2025-09-24 10:34:44
文档

5.浙江省首届高等数学竞赛试题(2002.12.7)

浙江省首届高等数学竞赛试题(2002.12.7)姓名:学号:学校:题号一二三四五,六总成绩得分一.计算题(每小题5分,共30分)1.求极限2.求积分3.设是方程的一个解,求常数,4.设连续,且当时,求5.设,求。6.求积分二(15分)求平面含在椭圆柱体内的面积.三.(20分)证明:四.(20分)设二元函数有一阶连续的偏导数,且证明:单位圆围上至少存在两点满足方程五.(15分)(非数学专业做)设,为满足,的两个实数列,已知且收敛.证明:也收敛.六.(15分)(数学专业做)设,,求的收敛半径,收敛
推荐度:
导读浙江省首届高等数学竞赛试题(2002.12.7)姓名:学号:学校:题号一二三四五,六总成绩得分一.计算题(每小题5分,共30分)1.求极限2.求积分3.设是方程的一个解,求常数,4.设连续,且当时,求5.设,求。6.求积分二(15分)求平面含在椭圆柱体内的面积.三.(20分)证明:四.(20分)设二元函数有一阶连续的偏导数,且证明:单位圆围上至少存在两点满足方程五.(15分)(非数学专业做)设,为满足,的两个实数列,已知且收敛.证明:也收敛.六.(15分)(数学专业做)设,,求的收敛半径,收敛
浙江省首届高等数学竞赛试题(2002.12.7)                           

姓名:学号:  学校:                         

题号         

  一                  

  二                  

  三                

  四              

  五,六        

总成绩            

得分             

                                                                                            
一.计算题 (每小题5分,共30分)

1.求极限  

                                                                                                                          

                                                                            

                                                                                  

 2.求积分    

                                                                                            

                                                                               

                                                                                        

                                                                          

3.设是方程的一个解,求常数,  

                                                                                       

                                                                                 

                                                                                

                                                                                 

                                                                                       

                                                                             

4.设连续,且当时,求  

                                                                              

                                                                               

                                                                            

                                                                               

                                                                                  

5.设,求  。

                                                                                  

                                                                                            

                                                                                                 

                                                                                                          

                                                                                      

                                                                               

6.求积分                                                         

                                                                                             

                                                                                                    

                                                                                                                      

                                                                                

                                                                          

                                                                                 

 二 (15分)求平面含在椭圆柱体内的面积.

                                                                                      

                                                                                         

                                                                                                 

                                                                                              

                                                                                   

三.(20分)证明: 

                                                                                    

                                                                                  

                                                                                       

                                                                                   

                                                                             

四.(20分)设二元函数有一阶连续的偏导数,且

证明:单位圆围上至少存在两点满足方程

                                                                                      

                                                                              

                                                                                                                            

                                                                            

                                                                               

五.(15分)(非数学专业做)设,为满足,的两个实数列,已知且收敛.证明:也收敛.

                                                                                  

                                                                                                            

                                                                              

                                                                          

                                                                                    

                                                                                

                                                                                  

六.(15分) (数学专业做)设, , 求的收敛半径,收敛域及和函数.                                                                      

                                                                                                          

                                                                                       

                                                                                      

                                                                                      

                                                                                

                                                                           

文档

5.浙江省首届高等数学竞赛试题(2002.12.7)

浙江省首届高等数学竞赛试题(2002.12.7)姓名:学号:学校:题号一二三四五,六总成绩得分一.计算题(每小题5分,共30分)1.求极限2.求积分3.设是方程的一个解,求常数,4.设连续,且当时,求5.设,求。6.求积分二(15分)求平面含在椭圆柱体内的面积.三.(20分)证明:四.(20分)设二元函数有一阶连续的偏导数,且证明:单位圆围上至少存在两点满足方程五.(15分)(非数学专业做)设,为满足,的两个实数列,已知且收敛.证明:也收敛.六.(15分)(数学专业做)设,,求的收敛半径,收敛
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top