最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

数学建模之线性规划

来源:动视网 责编:小OO 时间:2025-09-24 10:24:36
文档

数学建模之线性规划

数学建模作业二一、某商店拟制定某种商品7—12月的进货、销售计划。已知商店最大库存量为1500件,6月底已有存货300件,年底的库存以不少于300件为宜,以后每月进货一次。假设各月份该商品买进、售出单价如下表。若每件每月的库存费为0.5元,问各月进货、售货多少件,才能使净收益最大。试建立数学模型,并求解。月7101112买进(元/件)282625272423.5卖出(元/件)292726282525解:可有两种进货方式,月初进货和月末进货,每种方式都有其相应的最优解,两者相比较,取其大值。
推荐度:
导读数学建模作业二一、某商店拟制定某种商品7—12月的进货、销售计划。已知商店最大库存量为1500件,6月底已有存货300件,年底的库存以不少于300件为宜,以后每月进货一次。假设各月份该商品买进、售出单价如下表。若每件每月的库存费为0.5元,问各月进货、售货多少件,才能使净收益最大。试建立数学模型,并求解。月7101112买进(元/件)282625272423.5卖出(元/件)292726282525解:可有两种进货方式,月初进货和月末进货,每种方式都有其相应的最优解,两者相比较,取其大值。
                                数学建模作业二

一、某商店拟制定某种商品7—12月的进货、销售计划。已知商店最大库存量为1500件,6月底已有存货300件,年底的库存以不少于300件为宜,以后每月进货一次。假设各月份该商品买进、售出单价如下表。若每件每月的库存费为0.5元,问各月进货、售货多少件,才能使净收益最大。试建立数学模型,并求解。

789101112
买进(元/件)282625272423.5
卖出(元/件)292726282525
解:可有两种进货方式,月初进货和月末进货,每种方式都有其相应的最优解,两者相比较,取其大值。

(1)月末进货:从七月为第一月开始,设第i月售货、进货量分别为,件,则第i月末工厂的库存量为300+,工厂的利润Z应是产品卖价减去进价与库存费用,故目标函数为

      Max    Z=29+27+26+28+25+25-28

-26-25-27-24-23.5-0.5[300+]整理得

Z=-900+31.5+29+27.5+29+25.5+25-30.5-28-26.5-28-24.5-23.5.

约束条件有:商店的最大库容量

              300-+1500

              300+1500(i=2,3,4,5,6)

年底的最小库存

300300

月最大销售

300-0

              300+(i=2,3,4,5,6)

因此本问题的数学模型为

Max              -900+32+29.5+28+29.5+26+25.5-30.5-28

-26.5-28-24.5-23.5;

        

s.t.               300-+1500,

              300+1500(i=2,3,4,5,6),

300300,

300-0,

              300+(i=2,3,4,5,6),

              (i,j=1,2,3,4,5,6);

化简得数学模型为

Max        -900+32+29.5+28+29.5+26+25.5-30.5-28

-26.5-28-24.5-23.5;

s.t.                                                         - 1200,

                                                     -+-1200,

                                          -+-+-1200,

                                -+-+-+- 1200,

                      -+-+-+- +-1200,

            -+-+-+- +-+- 1200,

-+-+-+-+-+-,

                                                                - -300,

                                                         ---300,

                                               -+---300,

-+-+-- -300,

-+-+-+- --300,

-+-+-+- +-- -300,

    (i,j=1,2,3,4,5,6)

利用lingo编制程序(见附录)求解得

最大净收益为5250元,此时==300,=======0

==1500

(2)月初进货:从七月为第一月开始,设第i月售货、进货量分别为,件,则第i月末工厂的库存量为300+,工厂的利润Z应是产品卖价减去进价与库存费用,故目标函数为

      Max    Z=29+27+26+28+25+25-28

-26-25-27-24-23.5-0.5[300++]整理得

Z=-900+31.5+29+27.5+29+25.5-31.5-28.5-27-28.5-25-24.

约束条件有:商店的最大库容量

                                                300+1500;

              300+1500(i=1,2,3,4,5);

年底的最小库存

300300;

月最大销售

                        300+(i=1,2,3,4,5,6)

因此本问题的数学模型为

Max      Z=-900+31.5+29+27.5+29+25.5+25-31.5

-28.5-27-28.5-25-24;

s.t.                                                      300+1500,

                                   300+1500(i=1,2,3,4,5),

300300,

300+(i=1,2,3,4,5,6),

                                           (i,j=1,2,3,4,5,6);

化简得数学模型为

Max        -900+31.5+29+27.5+29+25.5-31.5

-28.5-27-28.5-25-24,

  s.t.                                              1200,

                                                           -+1200,

                                                 -+-+1200,

                                        -+-+-+1200,

                             -+-+-+- +1200,

                  -+-+-+- +-+ 1200,

-+-+-+-+-+-0,

                                                               --300,

                                                        + ---300,

                                               -+--+-300,

-+-+-- +-300,

-+-+-+- -+-300,

-+-+-+- +--+-300,

    (i,j=1,2,3,4,5,6);

利用lingo编制程序(见附录)解得:

=======1500,==1200,==0 此时最优值为7050元

通过表格数据不难分析发现该解是最优解,其与表格数据相一致。

综合(1)、(2)得出该问题的解为=======1500,==1200,

==0 ,最优值为7050元。

二、某货船的载重量为12000吨,总容积为45000,冷藏容积为3000,可燃性指数总和不得超过7500,准备装6种货物,每种货物的单价、重量、体积和可燃性指数如下表。试确立相应的装货方案,使价值最高。

货物重量体积可燃性是否冷藏单价
A1

0.21.2150
A2

0.52.32100
A3

0.53.04150
A4

0.124.51100
A5

0.255.23250
A6

0.56.49200
解:1. 以货物的件数为决策变量,设第i种货物的件数为,则目标函数最大价值可表示为

Max   Z=50+100+150+100+250+200

约束条件应有四组:(1)货船的载重量

                            0.2+0.5+0.5+0.12+0.25+0.512000;

             (2)总容积

                           1.2+2.3+3.0+4.5+5.2+6.445000;

             (3)冷藏容积

                                                      1.2+4.53000;

             (4)可燃性

                                          +2+4++3+97500;

因此本问题的数学模型(化简后)为:

Max   Z=50+100+150+100+250+200;

s.t.          0.2+0.5+0.5+0.12+0.25+0.512000,

                          1.2+2.3+3.0+4.5+5.2+6.445000,

                                                    1.2+4.53000,

                                        +2+4++3+97500,

                                              0 (i=1,2,3,4,5,6);

2.用lingo编制程序并求解得=666.6667, =2277.778,max  Z=636111.1

分析:从表中数据对比中,不难分析出总重量和总体积都是富裕的,起主要控制作用的是可燃性和冷藏容积。为使价值最高,则“每单位可燃性”和“每单位冷藏容积”所代表的价值应尽量大,从而,的数量应尽量大。Lingo计算结果也说明了这一点。

由于件数只能是整数:取=666,=2278,则 max Z=636100

故该问题的最优解为  ====0,=666,=2278

                                      最大价值为636100

三、某公司下设三个工厂,生产同一种产品,现要把三个工厂生产的产品运送给四个客户,工厂的产量,订户的需求量以及从三个工厂到四个订户的单位运费如下表: 

工厂订    户供应量
1234
1526730
23541020
34321340
需求量20104525
分配时还应满足下面条件:

⑴订户4的订货量要保证满足;

⑵其余订户的订货量满足程度不低于80%;

⑶工厂3调运给订户1的产品数不低于15;

⑷因线路问题,工厂2应尽可能不分配给订户4;

⑸订户1和订户3的满足程度应尽可能平衡;

求在满足上述条件下的最佳分配方案.

解:1.设第i工厂运送的j订户的运货量为,单位运费为,工厂的供应量为。分配的目的是运输总费用最小,则目标函数可表示如下:

Min    Z=

约束条件有(1)产品运输量与产品供应量应平衡;

                                                        =

           (2)订户4的订货量要保证满足;

                                                           ++=25 

           (3)订户1,2,3的订货量满足程度不低于80%;

                                               ++250.8

                                               ++100.8

                                                       ++450.8

          (4)工厂3调运给订户1的产品数不低于15;

                                                                    15

          (5)工厂2应尽可能不分配给订户4;

                                                                     =0

          (6)订户1和订户3的满足程度应尽可能平衡;

                                           

整理化简并加上非负约束可得本题的数学模型为

   Max   Z=-5-2-6-7-3-5-4-10-4-3-2-13;

s.t.                                +++=30,

                                  +++=20,

                                  +++=40,

                                     ++=25 ,

                                     ++16,

                                ++8,

                                    ++36,

                                             15,

                                              =0,

  9+9+9- 4-4-4=0,

0,

2.编制lingo程序并求解得:

                      Max Z=-375.4615

此时=====0,=5,==25,=2.538462,=14.46154,=15,=3

分析:产品的单位属性未给,故依据产品的量是否取整可得

(1)运输量能够取到小数(如为重量,体积等),可取小数,则最优解为

=====0,=5,==25,=2.538462,=14.46154,=15,=3   

此时总运费为375.4615

(2)运输量只能取整数(如件数等),则利用线性规划解得特点在和进行调整

  1).取=2,=15,此时订户1和订户3的满意程度(定义为实际运输量与需求量之比)分别为0.85和0.8888,相差0.03888,此时总运费为376

  2).取=3,=14,此时订户1和订户3的满意程度分别为0.9和0.86666,相差0.0334,此时总运费为375

显然2)更满足条件(6),故最优解为:

=====0,=5,==25,=3,=14,=15,=3   

总运费为375

                             附录 lingo程序及运行结果

一.

(1)题程序

model:

max=-900+31.5*x11+29*x21+27.5*x31+29*x41+25.5*x51+25*x61-30.5*x12-28*x22-26.5*x32-28*x42-25.5*x52-23.5*x62;

x12-x11<=1200;

x12-x11+x22-x21<=1200;

x12-x11+x22-x21+x32-x31<=1200;

x12-x11+x22-x21+x32-x31+x42-x41<=1200;

x12-x11+x22-x21+x32-x31+x42-x41+x52-x51<=1200;

x12-x11+x22-x21+x32-x31+x42-x41+x52-x51+x62-x61<=1200;

x12-x11+x22-x21+x32-x31+x42-x41+x52-x51+x62-x61>=0;

-x11>=-300;

x12-x11-x21>=-300;

x12-x11+x22-x21-x31>=-300;

x12-x11+x22-x21+x32-x31-x41>=-300;

x12-x11+x22-x21+x32-x31+x42-x41-x51>=-300;

x12-x11+x22-x21+x32-x31+x42-x41+x52-x51-x61>=-300;

end

运行结果:

  Global optimal solution found.

  Objective value:                              5250.000

  Total solver iterations:                             0

                       Variable           Value        Reduced Cost

                            X11        300.0000            0.000000

                            X21        0.000000            1.500000

                            X31        0.000000           0.5000000

                            X41        1500.000            0.000000

                            X51        0.000000            2.500000

                            X61        0.000000           0.5000000

                            X12        0.000000            0.000000

                            X22        0.000000            0.000000

                            X32        1500.000            0.000000

                            X42        0.000000            0.000000

                            X52        0.000000            0.000000

                            X62        300.0000            0.000000

                            Row    Slack or Surplus      Dual Price

                              1        5250.000            1.000000

                              2        1500.000            0.000000

                              3        1500.000            0.000000

                              4        0.000000            2.500000

                              5        1500.000            0.000000

                              6        1500.000            0.000000

                              7        1200.000            0.000000

                              8        0.000000           -23.50000

                              9        0.000000           -1.000000

                             10        0.000000           -2.500000

                             11        0.000000           -1.500000

                             12        0.000000           -1.000000

                             13        0.000000           -2.500000

                             14        0.000000           -2.000000

(2)题程序

model:

max=-900+31.5*x11+29*x21+27.5*x31+29*x41+25.5*x51+25*x61-31.5*x12-28.5*x22-27*x32-28.5*x42-25*x52-24*x62;

x12<=1200;

x12-x11+x22<=1200;

x12-x11+x22-x21+x32<=1200;

x12-x11+x22-x21+x32-x31+x42<=1200;

x12-x11+x22-x21+x32-x31+x42-x41+x52<=1200;

x12-x11+x22-x21+x32-x31+x42-x41+x52-x51+x62<=1200;

x12-x11+x22-x21+x32-x31+x42-x41+x52-x51+x62-x61>=0;

X12-x11>=-300;

X22+x12-x11-x21>=-300;

x12-x11+x22-x21-x31+X32>=-300;

x12-x11+x22-x21+x32-x31-x41+X42>=-300;

x12-x11+x22-x21+x32-x31+x42-x41-x51+X52>=-300;

x12-x11+x22-x21+x32-x31+x42-x41+x52-x51-x61+X62>=-300;

end

运行结果:  Global optimal solution found.

  Objective value:                              7050.000

  Total solver iterations:                             0

                       Variable           Value        Reduced Cost

                            X11        1500.000            0.000000

                            X21        1500.000            0.000000

                            X31        0.000000            0.000000

                            X41        1500.000            0.000000

                            X51        1500.000            0.000000

                            X61        1200.000            0.000000

                            X12        1200.000            0.000000

                            X22        1500.000            0.000000

                            X32        1500.000            0.000000

                            X42        0.000000            1.000000

                            X52        1500.000            0.000000

                            X62        1500.000            0.000000

                            Row    Slack or Surplus      Dual Price

                              1        7050.000            1.000000

                              2        0.000000            0.000000

                              3        0.000000           0.5000000

                              4        0.000000           0.5000000

                              5        0.000000            1.500000

                              6        0.000000           0.5000000

                              7        0.000000            1.000000

                              8        0.000000           -25.00000

                              9        0.000000           -3.000000

                             10        0.000000           -2.000000

                             11        1500.000            0.000000

                             12        0.000000           -4.000000

                             13        0.000000           -1.500000

                             14        300.0000            0.000000

二.程序及运行结果

model:

   max=50*x1+100*x2+150*x3+100*x4+250*x5+200*x6;

0.2*x1+0.5*x2+0.5*x3+0.12*x4+0.25*x5+0.5*x6<=12000;

1.2*x1+2.3*x2+3*x3+4.5*x4+5.2*x5+6.4*x6<=45000;

1.2*x1+4.5*x4<=3000;

x1+2*x2+4*x3+x4+3*x5+9*x6<=7500;

end

  Global optimal solution found.

  Objective value:                              636111.1

  Total solver iterations:                             5

                       Variable           Value        Reduced Cost

                             X1        0.000000            37.77778

                             X2        0.000000            66.66667

                             X3        0.000000            183.3333

                             X4        666.6667            0.000000

                             X5        2277.778            0.000000

                             X6        0.000000            550.0000

                            Row    Slack or Surplus      Dual Price

                              1        636111.1            1.000000

                              2        11350.56            0.000000

                              3        30155.56            0.000000

                              4        0.000000            3.703704

                              5        0.000000            83.33333

三.程序及运行结果

model:

max=-5*x11-2*x12-6*x13-7*x14-3*x21-5*x22-4*x23-10*x24-4*x31-3*x32-2*x33-13*x34;

x11+x12+x13+x14=30;

x21+x22+x23+x24=20;

x31+x32+x33+x34=40;

x14+x24+x34=25;

x11+x21+x31>=16;

x12+x22+x32>=8;

x13+x23+x33>=36;

x31>=15;

x24=0;

9*x11+9*x21+9*x31-4*x13-4*x23-4*x33=0;

!9*x11+9*x21+9*x31-4*x13-4*x23-4*x33>=-20;

end

  Global optimal solution found.

  Objective value:                             -375.4615

  Total solver iterations:                             7

                       Variable           Value        Reduced Cost

                            X11        0.000000            5.000000

                            X12        5.000000            0.000000

                            X13        0.000000            5.000000

                            X14        25.00000            0.000000

                            X21        2.538462            0.000000

                            X22        3.000000            0.000000

                            X23        14.46154            0.000000

                            X24        0.000000            0.000000

                            X31        15.00000            0.000000

                            X32        0.000000            0.000000

                            X33        25.00000            0.000000

                            X34        0.000000            5.000000

                            Row    Slack or Surplus      Dual Price

                              1       -375.4615            1.000000

                              2        0.000000          -0.6923077

                              3        0.000000           -3.692308

                              4        0.000000           -1.692308

                              5        0.000000           -6.307692

                              6        1.538462            0.000000

                              7        0.000000           -1.307692

                              8        3.461538            0.000000

                              9        0.000000           -3.000000

                             10        0.000000            0.000000

                             11        0.000000           0.7692308E-01

                                                        

文档

数学建模之线性规划

数学建模作业二一、某商店拟制定某种商品7—12月的进货、销售计划。已知商店最大库存量为1500件,6月底已有存货300件,年底的库存以不少于300件为宜,以后每月进货一次。假设各月份该商品买进、售出单价如下表。若每件每月的库存费为0.5元,问各月进货、售货多少件,才能使净收益最大。试建立数学模型,并求解。月7101112买进(元/件)282625272423.5卖出(元/件)292726282525解:可有两种进货方式,月初进货和月末进货,每种方式都有其相应的最优解,两者相比较,取其大值。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top